Cargando…

Lower Central and Dimension Series of Groups

A fundamental object of study in group theory is the lower central series of groups. Understanding its relationship with the dimension series, which consists of the subgroups determined by the augmentation powers, is a challenging task. This monograph presents an exposition of different methods for...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Mikhailov, Roman (Autor), Passi, Inder Bir Singh (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2009.
Edición:1st ed. 2009.
Colección:Lecture Notes in Mathematics, 1952
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-85818-8
003 DE-He213
005 20220118185750.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 |a 9783540858188  |9 978-3-540-85818-8 
024 7 |a 10.1007/978-3-540-85818-8  |2 doi 
050 4 |a QA174-183 
072 7 |a PBG  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
072 7 |a PBG  |2 thema 
082 0 4 |a 512.2  |2 23 
100 1 |a Mikhailov, Roman.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Lower Central and Dimension Series of Groups  |h [electronic resource] /  |c by Roman Mikhailov, Inder Bir Singh Passi. 
250 |a 1st ed. 2009. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2009. 
300 |a XXII, 352 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 1952 
505 0 |a Lower Central Series -- Dimension Subgroups -- Derived Series -- Augmentation Powers -- Homotopical Aspects -- Miscellanea. 
520 |a A fundamental object of study in group theory is the lower central series of groups. Understanding its relationship with the dimension series, which consists of the subgroups determined by the augmentation powers, is a challenging task. This monograph presents an exposition of different methods for investigating this relationship. In addition to group theorists, the results are also of interest to topologists and number theorists. The approach is mainly combinatorial and homological. A novel feature is an exposition of simplicial methods for the study of problems in group theory. 
650 0 |a Group theory. 
650 0 |a Algebra, Homological. 
650 0 |a Algebraic topology. 
650 0 |a Associative rings. 
650 0 |a Associative algebras. 
650 1 4 |a Group Theory and Generalizations. 
650 2 4 |a Category Theory, Homological Algebra. 
650 2 4 |a Algebraic Topology. 
650 2 4 |a Associative Rings and Algebras. 
700 1 |a Passi, Inder Bir Singh.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540858836 
776 0 8 |i Printed edition:  |z 9783540858171 
830 0 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 1952 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-85818-8  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)