Cargando…

Optimal Urban Networks via Mass Transportation

Recently much attention has been devoted to the optimization of transportation networks in a given geographic area. One assumes the distributions of population and of services/workplaces (i.e. the network's sources and sinks) are known, as well as the costs of movement with/without the network,...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Buttazzo, Giuseppe (Autor), Pratelli, Aldo (Autor), Solimini, Sergio (Autor), Stepanov, Eugene (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2009.
Edición:1st ed. 2009.
Colección:Lecture Notes in Mathematics, 1961
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-85799-0
003 DE-He213
005 20220116194254.0
007 cr nn 008mamaa
008 110406s2009 gw | s |||| 0|eng d
020 |a 9783540857990  |9 978-3-540-85799-0 
024 7 |a 10.1007/978-3-540-85799-0  |2 doi 
050 4 |a QA402.5-402.6 
050 4 |a QA315-316 
072 7 |a PBU  |2 bicssc 
072 7 |a MAT005000  |2 bisacsh 
072 7 |a PBU  |2 thema 
082 0 4 |a 519.6  |2 23 
082 0 4 |a 515.64  |2 23 
100 1 |a Buttazzo, Giuseppe.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Optimal Urban Networks via Mass Transportation  |h [electronic resource] /  |c by Giuseppe Buttazzo, Aldo Pratelli, Sergio Solimini, Eugene Stepanov. 
250 |a 1st ed. 2009. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2009. 
300 |a X, 150 p. 15 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 1961 
505 0 |a Problem setting -- Optimal connected networks -- Relaxed problem and existence of solutions -- Topological properties of optimal sets -- Optimal sets and geodesics in the two-dimensional case. 
520 |a Recently much attention has been devoted to the optimization of transportation networks in a given geographic area. One assumes the distributions of population and of services/workplaces (i.e. the network's sources and sinks) are known, as well as the costs of movement with/without the network, and the cost of constructing/maintaining it. Both the long-term optimization and the short-term, "who goes where" optimization are considered. These models can also be adapted for the optimization of other types of networks, such as telecommunications, pipeline or drainage networks. In the monograph we study the most general problem settings, namely, when neither the shape nor even the topology of the network to be constructed is known a priori. 
650 0 |a Mathematical optimization. 
650 0 |a Calculus of variations. 
650 0 |a Operations research. 
650 0 |a Management science. 
650 0 |a Manifolds (Mathematics). 
650 1 4 |a Calculus of Variations and Optimization. 
650 2 4 |a Operations Research, Management Science . 
650 2 4 |a Manifolds and Cell Complexes. 
700 1 |a Pratelli, Aldo.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Solimini, Sergio.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Stepanov, Eugene.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540858218 
776 0 8 |i Printed edition:  |z 9783540857983 
830 0 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 1961 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-85799-0  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)