Conjugate Gradient Algorithms in Nonconvex Optimization
This up-to-date book is on algorithms for large-scale unconstrained and bound constrained optimization. Optimization techniques are shown from a conjugate gradient algorithm perspective. Large part of the book is devoted to preconditioned conjugate gradient algorithms. In particular memoryless and l...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Autor Corporativo: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2009.
|
Edición: | 1st ed. 2009. |
Colección: | Nonconvex Optimization and Its Applications ;
89 |
Temas: | |
Acceso en línea: | Texto Completo |
Tabla de Contenidos:
- Conjugate Direction Methods for Quadratic Problems
- Conjugate Gradient Methods for Nonconvex Problems
- Memoryless Quasi-Newton Methods
- Preconditioned Conjugate Gradient Algorithms
- Limited Memory Quasi-Newton Algorithms
- The Method of Shortest Residuals and Nondifferentiable Optimization
- The Method of Shortest Residuals for Differentiable Problems
- The Preconditioned Shortest Residuals Algorithm
- Optimization on a Polyhedron
- Conjugate Gradient Algorithms for Problems with Box Constraints
- Preconditioned Conjugate Gradient Algorithms for Problems with Box Constraints
- Preconditioned Conjugate Gradient Based Reduced-Hessian Methods.