Cargando…

Generalized Lie Theory in Mathematics, Physics and Beyond

The goal of this book is to extend the understanding of the fundamental role of generalizations of Lie theory and related non-commutative and non-associative structures in mathematics and physics. This volume is devoted to the interplay between several rapidly expanding research fields in contempora...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Silvestrov, Sergei D. (Editor ), Paal, Eugen (Editor ), Abramov, Viktor (Editor ), Stolin, Alexander (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2009.
Edición:1st ed. 2009.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-85332-9
003 DE-He213
005 20220118163819.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 |a 9783540853329  |9 978-3-540-85332-9 
024 7 |a 10.1007/978-3-540-85332-9  |2 doi 
050 4 |a QA150-272 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002000  |2 bisacsh 
072 7 |a PBF  |2 thema 
082 0 4 |a 512  |2 23 
245 1 0 |a Generalized Lie Theory in Mathematics, Physics and Beyond  |h [electronic resource] /  |c edited by Sergei D. Silvestrov, Eugen Paal, Viktor Abramov, Alexander Stolin. 
250 |a 1st ed. 2009. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2009. 
300 |a XVIII, 306 p. 3 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Non-Associative and Non-Commutative Structures for Physics -- Moufang Transformations and Noether Currents -- Weakly Nonassociative Algebras, Riccati and KP Hierarchies -- Applications of Transvectants -- Automorphisms of Finite Orthoalgebras, Exceptional Root Systems and Quantum Mechanics -- A Rewriting Approach to Graph Invariants -- Non-Commutative Deformations, Quantization, Homological Methods, and Representations -- Graded q-Differential Algebra Approach to q-Connection -- On Generalized N-Complexes Coming from Twisted Derivations -- Remarks on Quantizations, Words and R-Matrices -- Connections on Modules over Singularities of Finite and Tame CM Representation Type -- Computing Noncommutative Global Deformations Of D-Modules -- Comparing Small Orthogonal Classes -- Groups and Actions -- How to Compose Lagrangian? -- Semidirect Products of Generalized Quaternion Groups by a Cyclic Group -- A Characterization Of A Class Of 2-Groups By Their Endomorphism Semigroups -- Adjoint Representations and Movements -- Applications of Hypocontinuous Bilinear Maps in Infinite-Dimensional Differential Calculus -- Quasi-Lie, Super-Lie, Hom-Hopf and Super-Hopf Structures and Extensions, Deformations and Generalizations of Infinite-Dimensional Lie Algebras -- Hom-Lie Admissible Hom-Coalgebras and Hom-Hopf Algebras -- Bosonisation and Parastatistics -- Deformations of the Witt, Virasoro, and Current Algebra -- Conformal Algebras in the Context of Linear Algebraic Groups -- Lie Color and Hom-Lie Algebras of Witt Type and Their Central Extensions -- A Note on Quasi-Lie and Hom-Lie Structures of ?-Derivations of C=[Z 1 ±1 ,...,Z n ±1 ] -- Commutative Subalgebras in Noncommutative Algebras -- Algebraic Dependence of Commuting Elements in Algebras -- Crossed Product-Like and Pre-Crystalline Graded Rings -- Decomposition of the Enveloping Algebra so(5). 
520 |a The goal of this book is to extend the understanding of the fundamental role of generalizations of Lie theory and related non-commutative and non-associative structures in mathematics and physics. This volume is devoted to the interplay between several rapidly expanding research fields in contemporary mathematics and physics concerned with generalizations of the main structures of Lie theory aimed at quantization and discrete and non-commutative extensions of differential calculus and geometry, non-associative structures, actions of groups and semi-groups, non-commutative dynamics, non-commutative geometry and applications in physics and beyond. The book will be a useful source of inspiration for a broad spectrum of researchers and for research students, and includes contributions from several large research communities in modern mathematics and physics. This volume consists of 5 parts comprising 25 chapters, which were contributed by 32 researchers from 12 different countries. All contributions in the volume have been refereed. 
650 0 |a Algebra. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Mathematical physics. 
650 1 4 |a Algebra. 
650 2 4 |a Topological Groups and Lie Groups. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
700 1 |a Silvestrov, Sergei D.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Paal, Eugen.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Abramov, Viktor.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Stolin, Alexander.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540854043 
776 0 8 |i Printed edition:  |z 9783642099045 
776 0 8 |i Printed edition:  |z 9783540853312 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-85332-9  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)