Cargando…

Bio-inspired Algorithms for the Vehicle Routing Problem

The vehicle routing problem (VRP) is one of the most famous combinatorial optimization problems. In simple terms, the goal is to determine a set of routes with overall minimum cost that can satisfy several geographical scattered demands. Biological inspired computation is a field devoted to the deve...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Pereira, Francisco Baptista (Editor ), Tavares, Jorge (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2009.
Edición:1st ed. 2009.
Colección:Studies in Computational Intelligence, 161
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-85152-3
003 DE-He213
005 20220118045216.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 |a 9783540851523  |9 978-3-540-85152-3 
024 7 |a 10.1007/978-3-540-85152-3  |2 doi 
050 4 |a TA329-348 
050 4 |a TA345-345.5 
072 7 |a TBJ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a TBJ  |2 thema 
082 0 4 |a 620  |2 23 
245 1 0 |a Bio-inspired Algorithms for the Vehicle Routing Problem  |h [electronic resource] /  |c edited by Francisco Baptista Pereira, Jorge Tavares. 
250 |a 1st ed. 2009. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2009. 
300 |a XVI, 216 p. 57 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 161 
505 0 |a A Review of Bio-inspired Algorithms for Vehicle Routing -- A GRASP × Evolutionary Local Search Hybrid for the Vehicle Routing Problem -- An Evolutionary Algorithm for the Open Vehicle Routing Problem with Time Windows -- Using Genetic Algorithms for Multi-depot Vehicle Routing -- Hybridizing Problem-Specific Operators with Meta-heuristics for Solving the Multi-objective Vehicle Routing Problem with Stochastic Demand -- Exploiting Fruitful Regions in Dynamic Routing Using Evolutionary Computation -- EVITA: An Integral Evolutionary Methodology for the Inventory and Transportation Problem -- A Memetic Algorithm for a Pick-Up and Delivery Problem by Helicopter -- When the Rubber Meets the Road: Bio-inspired Field Service Scheduling in the Real World. 
520 |a The vehicle routing problem (VRP) is one of the most famous combinatorial optimization problems. In simple terms, the goal is to determine a set of routes with overall minimum cost that can satisfy several geographical scattered demands. Biological inspired computation is a field devoted to the development of computational tools modeled after principles that exist in natural systems. The adoption of such design principles enables the production of problem solving techniques with enhanced robustness and flexibility, able to tackle complex optimization situations. The goal of the volume is to present a collection of state-of-the-art contributions describing recent developments concerning the application of bio-inspired algorithms to the VRP. Over the 9 chapters, different algorithmic approaches are considered and a diverse set of problem variants are addressed. Some contributions focus on standard benchmarks widely adopted by the research community, while others address real-world situations. 
650 0 |a Engineering mathematics. 
650 0 |a Engineering-Data processing. 
650 0 |a Software engineering. 
650 0 |a Operations research. 
650 1 4 |a Mathematical and Computational Engineering Applications. 
650 2 4 |a Software Engineering. 
650 2 4 |a Operations Research and Decision Theory. 
700 1 |a Pereira, Francisco Baptista.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Tavares, Jorge.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642098871 
776 0 8 |i Printed edition:  |z 9783540873372 
776 0 8 |i Printed edition:  |z 9783540851516 
830 0 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 161 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-85152-3  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)