Cargando…

Innovations in Bayesian Networks Theory and Applications /

Bayesian networks currently provide one of the most rapidly growing areas of research in computer science and statistics. In compiling this volume we have brought together contributions from some of the most prestigious researchers in this field. Each of the twelve chapters is self-contained. Both t...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Holmes, Dawn E. (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2008.
Edición:1st ed. 2008.
Colección:Studies in Computational Intelligence, 156
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-85066-3
003 DE-He213
005 20220114195300.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783540850663  |9 978-3-540-85066-3 
024 7 |a 10.1007/978-3-540-85066-3  |2 doi 
050 4 |a TA329-348 
050 4 |a TA345-345.5 
072 7 |a TBJ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a TBJ  |2 thema 
082 0 4 |a 620  |2 23 
245 1 0 |a Innovations in Bayesian Networks  |h [electronic resource] :  |b Theory and Applications /  |c edited by Dawn E. Holmes. 
250 |a 1st ed. 2008. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2008. 
300 |a X, 322 p. 92 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 156 
505 0 |a to Bayesian Networks -- A Polemic for Bayesian Statistics -- A Tutorial on Learning with Bayesian Networks -- The Causal Interpretation of Bayesian Networks -- An Introduction to Bayesian Networks and Their Contemporary Applications -- Objective Bayesian Nets for Systems Modelling and Prognosis in Breast Cancer -- Modeling the Temporal Trend of the Daily Severity of an Outbreak Using Bayesian Networks -- An Information-Geometric Approach to Learning Bayesian Network Topologies from Data -- Causal Graphical Models with Latent Variables: Learning and Inference -- Use of Explanation Trees to Describe the State Space of a Probabilistic-Based Abduction Problem -- Toward a Generalized Bayesian Network -- A Survey of First-Order Probabilistic Models. 
520 |a Bayesian networks currently provide one of the most rapidly growing areas of research in computer science and statistics. In compiling this volume we have brought together contributions from some of the most prestigious researchers in this field. Each of the twelve chapters is self-contained. Both theoreticians and application scientists/engineers in the broad area of artificial intelligence will find this volume valuable. It also provides a useful sourcebook for Graduate students since it shows the direction of current research. 
650 0 |a Engineering mathematics. 
650 0 |a Engineering-Data processing. 
650 0 |a Artificial intelligence. 
650 1 4 |a Mathematical and Computational Engineering Applications. 
650 2 4 |a Artificial Intelligence. 
700 1 |a Holmes, Dawn E.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540873112 
776 0 8 |i Printed edition:  |z 9783642098758 
776 0 8 |i Printed edition:  |z 9783540850656 
830 0 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 156 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-85066-3  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)