Cargando…

Design and Analysis of Learning Classifier Systems A Probabilistic Approach /

This book provides a comprehensive introduction to the design and analysis of Learning Classifier Systems (LCS) from the perspective of machine learning. LCS are a family of methods for handling unsupervised learning, supervised learning and sequential decision tasks by decomposing larger problem sp...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Drugowitsch, Jan (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2008.
Edición:1st ed. 2008.
Colección:Studies in Computational Intelligence,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-79866-8
003 DE-He213
005 20220119030423.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783540798668  |9 978-3-540-79866-8 
024 7 |a 10.1007/978-3-540-79866-8  |2 doi 
050 4 |a Q334-342 
050 4 |a TA347.A78 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Drugowitsch, Jan.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Design and Analysis of Learning Classifier Systems  |h [electronic resource] :  |b A Probabilistic Approach /  |c by Jan Drugowitsch. 
250 |a 1st ed. 2008. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2008. 
300 |a XIV, 267 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-9503 
505 0 |a Background -- A Learning Classifier Systems Model -- A Probabilistic Model for LCS -- Training the Classifiers -- Mixing Independently Trained Classifiers -- The Optimal Set of Classifiers -- An Algorithmic Description -- Towards Reinforcement Learning with LCS -- Concluding Remarks. 
520 |a This book provides a comprehensive introduction to the design and analysis of Learning Classifier Systems (LCS) from the perspective of machine learning. LCS are a family of methods for handling unsupervised learning, supervised learning and sequential decision tasks by decomposing larger problem spaces into easy-to-handle subproblems. Contrary to commonly approaching their design and analysis from the viewpoint of evolutionary computation, this book instead promotes a probabilistic model-based approach, based on their defining question "What is an LCS supposed to learn?". Systematically following this approach, it is shown how generic machine learning methods can be applied to design LCS algorithms from the first principles of their underlying probabilistic model, which is in this book -- for illustrative purposes -- closely related to the currently prominent XCS classifier system. The approach is holistic in the sense that the uniform goal-driven design metaphor essentially covers all aspects of LCS and puts them on a solid foundation, in addition to enabling the transfer of the theoretical foundation of the various applied machine learning methods onto LCS. Thus, it does not only advance the analysis of existing LCS but also puts forward the design of new LCS within that same framework. 
650 0 |a Artificial intelligence. 
650 0 |a Engineering mathematics. 
650 0 |a Engineering-Data processing. 
650 1 4 |a Artificial Intelligence. 
650 2 4 |a Mathematical and Computational Engineering Applications. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642098611 
776 0 8 |i Printed edition:  |z 9783540872771 
776 0 8 |i Printed edition:  |z 9783540798651 
830 0 |a Studies in Computational Intelligence,  |x 1860-9503 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-79866-8  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)