Cargando…

Machine Learning Modeling Data Locally and Globally /

Machine Learning - Modeling Data Locally and Globally presents a novel and unified theory that tries to seamlessly integrate different algorithms. Specifically, the book distinguishes the inner nature of machine learning algorithms as either "local learning"or "global learning."T...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Huang, Kai-Zhu (Autor), Yang, Haiqin (Autor), King, Irwin (Autor), Lyu, Michael R. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2008.
Edición:1st ed. 2008.
Colección:Advanced Topics in Science and Technology in China,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-79452-3
003 DE-He213
005 20220119022308.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783540794523  |9 978-3-540-79452-3 
024 7 |a 10.1007/978-3-540-79452-3  |2 doi 
050 4 |a Q337.5 
050 4 |a TK7882.P3 
072 7 |a UYQP  |2 bicssc 
072 7 |a COM016000  |2 bisacsh 
072 7 |a UYQP  |2 thema 
082 0 4 |a 006.4  |2 23 
100 1 |a Huang, Kai-Zhu.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Machine Learning  |h [electronic resource] :  |b Modeling Data Locally and Globally /  |c by Kai-Zhu Huang, Haiqin Yang, Irwin King, Michael R. Lyu. 
250 |a 1st ed. 2008. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2008. 
300 |a X, 169 p. 53 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advanced Topics in Science and Technology in China,  |x 1995-6827 
505 0 |a Global Learning vs. Local Learning -- A General Global Learning Model: MEMPM -- Learning Locally and Globally: Maxi-Min Margin Machine -- Extension I: BMPM for Imbalanced Learning -- Extension II: A Regression Model from M4 -- Extension III: Variational Margin Settings within Local Data in Support Vector Regression -- Conclusion and Future Work. 
520 |a Machine Learning - Modeling Data Locally and Globally presents a novel and unified theory that tries to seamlessly integrate different algorithms. Specifically, the book distinguishes the inner nature of machine learning algorithms as either "local learning"or "global learning."This theory not only connects previous machine learning methods, or serves as roadmap in various models, but - more importantly - it also motivates a theory that can learn from data both locally and globally. This would help the researchers gain a deeper insight and comprehensive understanding of the techniques in this field. The book reviews current topics,new theories and applications. Kaizhu Huang was a researcher at the Fujitsu Research and Development Center and is currently a research fellow in the Chinese University of Hong Kong. Haiqin Yang leads the image processing group at HiSilicon Technologies. Irwin King and Michael R. Lyu are professors at the Computer Science and Engineering department of the Chinese University of Hong Kong. 
650 0 |a Pattern recognition systems. 
650 0 |a Information storage and retrieval systems. 
650 0 |a Data mining. 
650 1 4 |a Automated Pattern Recognition. 
650 2 4 |a Information Storage and Retrieval. 
650 2 4 |a Data Mining and Knowledge Discovery. 
700 1 |a Yang, Haiqin.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a King, Irwin.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Lyu, Michael R.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540872351 
776 0 8 |i Printed edition:  |z 9783642098345 
776 0 8 |i Printed edition:  |z 9783540794516 
830 0 |a Advanced Topics in Science and Technology in China,  |x 1995-6827 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-79452-3  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)