Cargando…

Diagnosis of Process Nonlinearities and Valve Stiction Data Driven Approaches /

In this book, Higher Order Statistical (HOS) theory is used to develop indices for detecting and quantifying signal non-Gaussianity and nonlinearity. These indices, together with specific patterns in the mapping of process output and controller output are used to diagnose the causes of poor control...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Choudhury, Ali Ahammad Shoukat (Autor), Shah, Sirish L. (Autor), Thornhill, Nina F. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2008.
Edición:1st ed. 2008.
Colección:Advances in Industrial Control,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-79224-6
003 DE-He213
005 20220118205056.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783540792246  |9 978-3-540-79224-6 
024 7 |a 10.1007/978-3-540-79224-6  |2 doi 
050 4 |a TJ212-225 
072 7 |a TJFM  |2 bicssc 
072 7 |a GPFC  |2 bicssc 
072 7 |a TEC004000  |2 bisacsh 
072 7 |a TJFM  |2 thema 
082 0 4 |a 629.8312  |2 23 
082 0 4 |a 003  |2 23 
100 1 |a Choudhury, Ali Ahammad Shoukat.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Diagnosis of Process Nonlinearities and Valve Stiction  |h [electronic resource] :  |b Data Driven Approaches /  |c by Ali Ahammad Shoukat Choudhury, Sirish L. Shah, Nina F. Thornhill. 
250 |a 1st ed. 2008. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2008. 
300 |a XX, 286 p. 313 illus., 115 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advances in Industrial Control,  |x 2193-1577 
505 0 |a Higher-Order Statistics -- Higher-Order Statistics: Preliminaries -- Bispectrum and Bicoherence -- Data Quality - Compression and Quantization -- Impact of Data Compression and Quantization on Data-Driven Process Analyses -- Nonlinearity and Control Performance -- Measures of Nonlinearity - A Review -- Linear or Nonlinear? A Bicoherence-Based Measure of Nonlinearity -- A Nonlinearity Measure Based on Surrogate Data Analysis -- Nonlinearities in Control Loops -- Diagnosis of Poor Control Performance -- Control Valve Stiction~- Definition, Modelling, Detection and Quantification -- Different Types of Faults in Control Valves -- Stiction: Definition and Discussions -- Physics-Based Model of Control Valve Stiction -- Data-Driven Model of Valve Stiction -- Describing Function Analysis -- Automatic Detection and Quantification of Valve Stiction -- Industrial Applications of the Stiction Quantification Algorithm -- Confirming Valve Stiction -- Plant-wide Oscillations - Detection and Diagnosis -- Detection of Plantwide Oscillations -- Diagnosis of Plant-wide Oscillations. 
520 |a In this book, Higher Order Statistical (HOS) theory is used to develop indices for detecting and quantifying signal non-Gaussianity and nonlinearity. These indices, together with specific patterns in the mapping of process output and controller output are used to diagnose the causes of poor control loop performance. Often valve stiction is the main cause of poor control performance. A generalized definition of valve stiction based on the investigation of real plant data is proposed. A simple data-driven model of valve stiction is developed. The model is simple, yet powerful enough to properly simulate the complex valve stiction phenomena. Both open and closed loop results have been presented and validated to show the capability of the model. Conventional invasive methods such as the valve travel test can detect stiction easily. However, they are expensive, time consuming and tedious to use for examining thousands of valves in a typical process industry. A non-invasive method that can simultaneously detect and quantify control valve stiction is presented. The method requires only routine operating data from the process. Over a dozen industrial case studies have demonstrated the wide applicability and practicality of this method. In chemical industrial practice, data are often compressed for archival purposes, using various techniques. Compression degrades data quality and induces nonlinearity in the data. The issues of data quality degradation and nonlinearity induction due to compression are investigated in this book. An automatic method for detection and quantification of the compression present in the archived data is discussed. Compelling and quantitative analyses have been recommended to end the practice of process data compression. 
650 0 |a Control engineering. 
650 0 |a Security systems. 
650 1 4 |a Control and Systems Theory. 
650 2 4 |a Security Science and Technology. 
700 1 |a Shah, Sirish L.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Thornhill, Nina F.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642098109 
776 0 8 |i Printed edition:  |z 9783540872023 
776 0 8 |i Printed edition:  |z 9783540792239 
830 0 |a Advances in Industrial Control,  |x 2193-1577 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-79224-6  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)