Cargando…

Learning Classifier Systems in Data Mining

Just over thirty years after Holland first presented the outline for Learning Classifier System paradigm, the ability of LCS to solve complex real-world problems is becoming clear. In particular, their capability for rule induction in data mining has sparked renewed interest in LCS. This book brings...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Bull, Larry (Editor ), Bernadó-Mansilla, Ester (Editor ), Holmes, John (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2008.
Edición:1st ed. 2008.
Colección:Studies in Computational Intelligence, 125
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-78979-6
003 DE-He213
005 20220119025521.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783540789796  |9 978-3-540-78979-6 
024 7 |a 10.1007/978-3-540-78979-6  |2 doi 
050 4 |a TA329-348 
050 4 |a TA345-345.5 
072 7 |a TBJ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a TBJ  |2 thema 
082 0 4 |a 620  |2 23 
245 1 0 |a Learning Classifier Systems in Data Mining  |h [electronic resource] /  |c edited by Larry Bull, Ester Bernadó-Mansilla, John Holmes. 
250 |a 1st ed. 2008. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2008. 
300 |a IX, 230 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 125 
505 0 |a Learning Classifier Systems in Data Mining: An Introduction -- Data Mining in Proteomics with Learning Classifier Systems -- Improving Evolutionary Computation Based Data-Mining for the Process Industry: The Importance of Abstraction -- Distributed Learning Classifier Systems -- Knowledge Discovery from Medical Data: An Empirical Study with XCS -- Mining Imbalanced Data with Learning Classifier Systems -- XCS for Fusing Multi-Spectral Data in Automatic Target Recognition -- Foreign Exchange Trading Using a Learning Classifier System -- Towards Clustering with Learning Classifier Systems -- A Comparative Study of Several Genetic-Based Supervised Learning Systems. 
520 |a Just over thirty years after Holland first presented the outline for Learning Classifier System paradigm, the ability of LCS to solve complex real-world problems is becoming clear. In particular, their capability for rule induction in data mining has sparked renewed interest in LCS. This book brings together work by a number of individuals who are demonstrating their good performance in a variety of domains. The first contribution is arranged as follows: Firstly, the main forms of LCS are described in some detail. A number of historical uses of LCS in data mining are then reviewed before an overview of the rest of the volume is presented. The rest of this book describes recent research on the use of LCS in the main areas of machine learning data mining: classification, clustering, time-series and numerical prediction, feature selection, ensembles, and knowledge discovery. 
650 0 |a Engineering mathematics. 
650 0 |a Engineering-Data processing. 
650 0 |a Artificial intelligence. 
650 1 4 |a Mathematical and Computational Engineering Applications. 
650 2 4 |a Artificial Intelligence. 
700 1 |a Bull, Larry.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Bernadó-Mansilla, Ester.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Holmes, John.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642097751 
776 0 8 |i Printed edition:  |z 9783540871651 
776 0 8 |i Printed edition:  |z 9783540789789 
830 0 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 125 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-78979-6  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)