Cargando…

Discrete Optimization with Interval Data Minmax Regret and Fuzzy Approach /

In operations research applications we are often faced with the problem of incomplete or uncertain data. This book considers solving combinatorial optimization problems with imprecise data modeled by intervals and fuzzy intervals. It focuses on some basic and traditional problems, such as minimum sp...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kasperski, Adam (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2008.
Edición:1st ed. 2008.
Colección:Studies in Fuzziness and Soft Computing,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-78484-5
003 DE-He213
005 20220118193222.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783540784845  |9 978-3-540-78484-5 
024 7 |a 10.1007/978-3-540-78484-5  |2 doi 
050 4 |a QA402.5-402.6 
072 7 |a PBU  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
072 7 |a PBU  |2 thema 
082 0 4 |a 519.6  |2 23 
100 1 |a Kasperski, Adam.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Discrete Optimization with Interval Data  |h [electronic resource] :  |b Minmax Regret and Fuzzy Approach /  |c by Adam Kasperski. 
250 |a 1st ed. 2008. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2008. 
300 |a XVI, 220 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Fuzziness and Soft Computing,  |x 1860-0808 
505 0 |a Minmax Regret Combinatorial Optimization Problems with Interval Data -- Problem Formulation -- Evaluation of Optimality of Solutions and Elements -- Exact Algorithms -- Approximation Algorithms -- Minmax Regret Minimum Selecting Items -- Minmax Regret Minimum Spanning Tree -- Minmax Regret Shortest Path -- Minmax Regret Minimum Assignment -- Minmax Regret Minimum s???t Cut -- Fuzzy Combinatorial Optimization Problem -- Conclusions and Open Problems -- Minmax Regret Sequencing Problems with Interval Data -- Problem Formulation -- Sequencing Problem with Maximum Lateness Criterion -- Sequencing Problem with Weighted Number of Late Jobs -- Sequencing Problem with the Total Flow Time Criterion -- Conclusions and Open Problems -- Discrete Scenario Representation of Uncertainty. 
520 |a In operations research applications we are often faced with the problem of incomplete or uncertain data. This book considers solving combinatorial optimization problems with imprecise data modeled by intervals and fuzzy intervals. It focuses on some basic and traditional problems, such as minimum spanning tree, shortest path, minimum assignment, minimum cut and various sequencing problems. The interval based approach has become very popular in the recent decade. Decision makers are often interested in hedging against the risk of poor (worst case) system performance. This is particularly important for decisions that are encountered only once. In order to compute a solution that behaves reasonably under any likely input data, the maximal regret criterion is widely used. Under this criterion we seek a solution that minimizes the largest deviation from optimum over all possible realizations of the input data. The minmax regret approach to discrete optimization with interval data has attracted considerable attention in the recent decade. This book summarizes the state of the art in the area and addresses some open problems. Furthermore, it contains a chapter devoted to the extension of the framework to the case when fuzzy intervals are applied to model uncertain data. The fuzzy intervals allow a more sophisticated uncertainty evaluation in the setting of possibility theory. This book is a valuable source of information for all operations research practitioners who are interested in modern approaches to problem solving. Apart from the description of the theoretical framework, it also presents some algorithms that can be applied to solve problems that arise in practice. 
650 0 |a Mathematical optimization. 
650 0 |a Engineering mathematics. 
650 0 |a Engineering-Data processing. 
650 0 |a Artificial intelligence. 
650 1 4 |a Optimization. 
650 2 4 |a Mathematical and Computational Engineering Applications. 
650 2 4 |a Artificial Intelligence. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642097201 
776 0 8 |i Printed edition:  |z 9783540849230 
776 0 8 |i Printed edition:  |z 9783540784838 
830 0 |a Studies in Fuzziness and Soft Computing,  |x 1860-0808 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-78484-5  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)