Arithmetical Investigations Representation Theory, Orthogonal Polynomials, and Quantum Interpolations /
In this volume the author further develops his philosophy of quantum interpolation between the real numbers and the p-adic numbers. The p-adic numbers contain the p-adic integers Zp which are the inverse limit of the finite rings Z/pn. This gives rise to a tree, and probability measures w on Zp corr...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Autor Corporativo: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2008.
|
Edición: | 1st ed. 2008. |
Colección: | Lecture Notes in Mathematics,
|
Temas: | |
Acceso en línea: | Texto Completo |
Tabla de Contenidos:
- Introduction: Motivations from Geometry
- Gamma and Beta Measures
- Markov Chains
- Real Beta Chain and q-Interpolation
- Ladder Structure
- q-Interpolation of Local Tate Thesis
- Pure Basis and Semi-Group
- Higher Dimensional Theory
- Real Grassmann Manifold
- p-Adic Grassmann Manifold
- q-Grassmann Manifold
- Quantum Group Uq(su(1, 1)) and the q-Hahn Basis.