Cargando…

Discrete-Time High Order Neural Control Trained with Kalman Filtering /

The objective of this work is to present recent advances in the theory of neural control for discrete-time nonlinear systems with multiple inputs and multiple outputs. The results that appear in each chapter include rigorous mathematical analyses, based on the Lyapunov approach, in order to guarante...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Sanchez, Edgar N. (Autor), Alanís, Alma Y. (Autor), Loukianov, Alexander G. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2008.
Edición:1st ed. 2008.
Colección:Studies in Computational Intelligence,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-78289-6
003 DE-He213
005 20220118103309.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783540782896  |9 978-3-540-78289-6 
024 7 |a 10.1007/978-3-540-78289-6  |2 doi 
050 4 |a TA329-348 
050 4 |a TA345-345.5 
072 7 |a TBJ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a TBJ  |2 thema 
082 0 4 |a 620  |2 23 
100 1 |a Sanchez, Edgar N.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Discrete-Time High Order Neural Control  |h [electronic resource] :  |b Trained with Kalman Filtering /  |c by Edgar N. Sanchez, Alma Y. Alanís, Alexander G. Loukianov. 
250 |a 1st ed. 2008. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2008. 
300 |a X, 110 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-9503 
505 0 |a Mathematical Preliminaries -- Discrete-Time Adaptive Neural Backstepping -- Discrete-Time Block Control -- Discrete-Time Neural Observers -- Discrete-Time Output Trajectory Tracking -- Real Time Implementation -- Conclusions and Future Work. 
520 |a The objective of this work is to present recent advances in the theory of neural control for discrete-time nonlinear systems with multiple inputs and multiple outputs. The results that appear in each chapter include rigorous mathematical analyses, based on the Lyapunov approach, in order to guarantee its properties; in addition, for each chapter, simulation results are included to verify the successful performance of the corresponding proposed schemes. In order to complete the treatment of these schemes, the book includes a chapter presenting experimental results related to their application to an electric three phase induction motor, which show the applicability of such designs. The proposed schemes could be employed for different applications beyond the ones presented in this book. The book presents solutions for the output trajectory tracking problem of unknown nonlinear systems based on four schemes. For the first one, a direct design method is considered: the well known backstepping method, under the assumption of complete state measurement; the second one considers an indirect method, solved with the block control and the sliding mode techniques, under the same assumption. For the third scheme, the backstepping technique is reconsidering including a neural observer, and finally the block control and the sliding mode techniques are used again too, with a neural observer. All the proposed schemes are developed in discrete-time. For both mentioned control methods as well as for the neural observer, the on-line training of the respective neural networks is performed by Kalman Filtering. 
650 0 |a Engineering mathematics. 
650 0 |a Engineering-Data processing. 
650 0 |a Artificial intelligence. 
650 0 |a System theory. 
650 0 |a Control engineering. 
650 0 |a Robotics. 
650 0 |a Automation. 
650 0 |a Control theory. 
650 0 |a Mathematical physics. 
650 1 4 |a Mathematical and Computational Engineering Applications. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Complex Systems. 
650 2 4 |a Control, Robotics, Automation. 
650 2 4 |a Systems Theory, Control . 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
700 1 |a Alanís, Alma Y.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Loukianov, Alexander G.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642096952 
776 0 8 |i Printed edition:  |z 9783540870753 
776 0 8 |i Printed edition:  |z 9783540782889 
830 0 |a Studies in Computational Intelligence,  |x 1860-9503 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-78289-6  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)