Cargando…

Multi-Objective Evolutionary Algorithms for Knowledge Discovery from Databases

Data Mining (DM) is the most commonly used name to describe such computational analysis of data and the results obtained must conform to several objectives such as accuracy, comprehensibility, interest for the user etc. Though there are many sophisticated techniques developed by various interdiscipl...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Ghosh, Ashish (Editor ), Dehuri, Satchidananda (Editor ), Ghosh, Susmita (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2008.
Edición:1st ed. 2008.
Colección:Studies in Computational Intelligence, 98
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-77467-9
003 DE-He213
005 20230124143510.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783540774679  |9 978-3-540-77467-9 
024 7 |a 10.1007/978-3-540-77467-9  |2 doi 
050 4 |a TA329-348 
050 4 |a TA345-345.5 
072 7 |a TBJ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a TBJ  |2 thema 
082 0 4 |a 620  |2 23 
245 1 0 |a Multi-Objective Evolutionary Algorithms for Knowledge Discovery from Databases  |h [electronic resource] /  |c edited by Ashish Ghosh, Satchidananda Dehuri, Susmita Ghosh. 
250 |a 1st ed. 2008. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2008. 
300 |a XIV, 162 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 98 
505 0 |a Genetic Algorithm for Optimization of Multiple Objectives in Knowledge Discovery from Large Databases -- Knowledge Incorporation in Multi-objective Evolutionary Algorithms -- Evolutionary Multi-objective Rule Selection for Classification Rule Mining -- Rule Extraction from Compact Pareto-optimal Neural Networks -- On the Usefulness of MOEAs for Getting Compact FRBSs Under Parameter Tuning and Rule Selection -- Classification and Survival Analysis Using Multi-objective Evolutionary Algorithms -- Clustering Based on Genetic Algorithms. 
520 |a Data Mining (DM) is the most commonly used name to describe such computational analysis of data and the results obtained must conform to several objectives such as accuracy, comprehensibility, interest for the user etc. Though there are many sophisticated techniques developed by various interdisciplinary fields only a few of them are well equipped to handle these multi-criteria issues of DM. Therefore, the DM issues have attracted considerable attention of the well established multiobjective genetic algorithm community to optimize the objectives in the tasks of DM. The present volume provides a collection of seven articles containing new and high quality research results demonstrating the significance of Multi-objective Evolutionary Algorithms (MOEA) for data mining tasks in Knowledge Discovery from Databases (KDD). These articles are written by leading experts around the world. It is shown how the different MOEAs can be utilized, both in individual and integrated manner, in various ways to efficiently mine data from large databases. 
650 0 |a Engineering mathematics. 
650 0 |a Engineering-Data processing. 
650 0 |a Artificial intelligence. 
650 1 4 |a Mathematical and Computational Engineering Applications. 
650 2 4 |a Artificial Intelligence. 
700 1 |a Ghosh, Ashish.  |e editor.  |0 (orcid)0000-0003-1548-5576  |1 https://orcid.org/0000-0003-1548-5576  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Dehuri, Satchidananda.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Ghosh, Susmita.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642096150 
776 0 8 |i Printed edition:  |z 9783540846963 
776 0 8 |i Printed edition:  |z 9783540774662 
830 0 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 98 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-77467-9  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)