Cargando…

Notes on Coxeter Transformations and the McKay Correspondence

One of the beautiful results in the representation theory of the finite groups is McKay's theorem on a correspondence between representations of the binary polyhedral group of SU(2) and vertices of an extended simply-laced Dynkin diagram. The Coxeter transformation is the main tool in the proof...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Stekolshchik, Rafael (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2008.
Edición:1st ed. 2008.
Colección:Springer Monographs in Mathematics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-77399-3
003 DE-He213
005 20220115074403.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783540773993  |9 978-3-540-77399-3 
024 7 |a 10.1007/978-3-540-77399-3  |2 doi 
050 4 |a QA150-272 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002000  |2 bisacsh 
072 7 |a PBF  |2 thema 
082 0 4 |a 512  |2 23 
100 1 |a Stekolshchik, Rafael.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Notes on Coxeter Transformations and the McKay Correspondence  |h [electronic resource] /  |c by Rafael Stekolshchik. 
250 |a 1st ed. 2008. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2008. 
300 |a XX, 240 p. 28 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Monographs in Mathematics,  |x 2196-9922 
505 0 |a Preliminaries -- The Jordan normal form of the Coxeter transformation -- Eigenvalues, splitting formulas and diagrams Tp,q,r -- R. Steinberg's theorem, B. Kostant's construction -- The affine Coxeter transformation. 
520 |a One of the beautiful results in the representation theory of the finite groups is McKay's theorem on a correspondence between representations of the binary polyhedral group of SU(2) and vertices of an extended simply-laced Dynkin diagram. The Coxeter transformation is the main tool in the proof of the McKay correspondence, and is closely interrelated with the Cartan matrix and Poincaré series. The Coxeter functors constructed by Bernstein, Gelfand and Ponomarev plays a distinguished role in the representation theory of quivers. On these pages, the ideas and formulas due to J. N. Bernstein, I. M. Gelfand and V. A. Ponomarev, H.S.M. Coxeter, V. Dlab and C.M. Ringel, V. Kac, J. McKay, T.A. Springer, B. Kostant, P. Slodowy, R. Steinberg, W. Ebeling and several other authors, as well as the author and his colleagues from Subbotin's seminar, are presented in detail. Several proofs seem to be new. 
650 0 |a Algebra. 
650 0 |a Functional analysis. 
650 0 |a Commutative algebra. 
650 0 |a Commutative rings. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Group theory. 
650 1 4 |a Algebra. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Commutative Rings and Algebras. 
650 2 4 |a Topological Groups and Lie Groups. 
650 2 4 |a Group Theory and Generalizations. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642096044 
776 0 8 |i Printed edition:  |z 9783540846796 
776 0 8 |i Printed edition:  |z 9783540773986 
830 0 |a Springer Monographs in Mathematics,  |x 2196-9922 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-77399-3  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)