Cargando…

The Geometry of Infinite-Dimensional Groups

This monograph gives an overview of various classes of infinite-dimensional Lie groups and their applications in Hamiltonian mechanics, fluid dynamics, integrable systems, gauge theory, and complex geometry. While infinite-dimensional groups often exhibit very peculiar features, this book describes...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Khesin, Boris (Autor), Wendt, Robert (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2009.
Edición:1st ed. 2009.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-77263-7
003 DE-He213
005 20220115065523.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 |a 9783540772637  |9 978-3-540-77263-7 
024 7 |a 10.1007/978-3-540-77263-7  |2 doi 
050 4 |a QA252.3 
050 4 |a QA387 
072 7 |a PBG  |2 bicssc 
072 7 |a MAT014000  |2 bisacsh 
072 7 |a PBG  |2 thema 
082 0 4 |a 512.55  |2 23 
082 0 4 |a 512.482  |2 23 
100 1 |a Khesin, Boris.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 4 |a The Geometry of Infinite-Dimensional Groups  |h [electronic resource] /  |c by Boris Khesin, Robert Wendt. 
250 |a 1st ed. 2009. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2009. 
300 |a XII, 304 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Preface -- Introduction -- I Preliminaries -- II Infinite-dimensional Lie Groups: Their Geometry, Orbits and Dynamical Systems -- III Applications of Groups: Topological and Holomorphic Gauge Theories -- Appendices -- A1 Root Systems -- A2 Compact Lie Groups -- A3 Krichever-Novikov Algebras -- A4 Kähler Structures on the Virasoro and Loop Group Coadjoint Orbits -- A5 Metrics and Diameters of the Group of Hamiltonian Diffeomorphisms -- A6 Semi-Direct Extensions of the Diffeomorphism Group and Gas Dynamics -- A7 The Drinfeld-Sokolov Reduction -- A8 Surjectivity of the Exponential Map on Pseudo-Differential Symbols -- A9 Torus Actions on the Moduli Space of Flat Connections -- Bibliography -- Index. 
520 |a This monograph gives an overview of various classes of infinite-dimensional Lie groups and their applications in Hamiltonian mechanics, fluid dynamics, integrable systems, gauge theory, and complex geometry. While infinite-dimensional groups often exhibit very peculiar features, this book describes unifying geometric ideas of the theory and gives numerous illustrations and examples, ranging from the classification of the Virasoro coadjoint orbits to knot theory, from optimal mass transport to moduli spaces of flat connections on surfaces. The text includes many exercises and open questions, and it is accessible to both students and researchers in Lie theory, geometry, and Hamiltonian systems. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Group theory. 
650 0 |a Geometry. 
650 0 |a Mathematical physics. 
650 0 |a Global analysis (Mathematics). 
650 0 |a Manifolds (Mathematics). 
650 0 |a Algebraic geometry. 
650 1 4 |a Topological Groups and Lie Groups. 
650 2 4 |a Group Theory and Generalizations. 
650 2 4 |a Geometry. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Global Analysis and Analysis on Manifolds. 
650 2 4 |a Algebraic Geometry. 
700 1 |a Wendt, Robert.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540869986 
776 0 8 |i Printed edition:  |z 9783540772620 
776 0 8 |i Printed edition:  |z 9783540852056 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-77263-7  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)