Cargando…

Stability and Convergence of Mechanical Systems with Unilateral Constraints

Stability of motion is a central theme in the dynamics of mechanical systems. While the stability theory for systems with bilateral constraints is a well-established field, this monograph represents a systematic study of mechanical systems with unilateral constraints, such as unilateral contact, imp...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Leine, Remco I. (Autor), van de Wouw, Nathan (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2008.
Edición:1st ed. 2008.
Colección:Lecture Notes in Applied and Computational Mechanics, 36
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-76975-0
003 DE-He213
005 20220118170842.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783540769750  |9 978-3-540-76975-0 
024 7 |a 10.1007/978-3-540-76975-0  |2 doi 
050 4 |a TJ1-1570 
072 7 |a TGB  |2 bicssc 
072 7 |a TEC009070  |2 bisacsh 
072 7 |a TGB  |2 thema 
082 0 4 |a 621  |2 23 
100 1 |a Leine, Remco I.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Stability and Convergence of Mechanical Systems with Unilateral Constraints  |h [electronic resource] /  |c by Remco I. Leine, Nathan van de Wouw. 
250 |a 1st ed. 2008. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2008. 
300 |a XIV, 236 p. 56 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Applied and Computational Mechanics,  |x 1860-0816 ;  |v 36 
505 0 |a Non-smooth Analysis -- Measure and Integration Theory -- Non-smooth Dynamical Systems -- Mechanical Systems with Set-valued Force Laws -- Lyapunov Stability Theory for Measure Differential Inclusions -- Stability Properties in Mechanical Systems -- Convergence Properties of Monotone Measure Differential Inclusions -- Concluding Remarks. 
520 |a Stability of motion is a central theme in the dynamics of mechanical systems. While the stability theory for systems with bilateral constraints is a well-established field, this monograph represents a systematic study of mechanical systems with unilateral constraints, such as unilateral contact, impact and friction. Such unilateral constraints give rise to non-smooth dynamical models for which stability theory is developed in this work. The book starts with the treatise of the mathematical background on non-smooth analysis, measure and integration theory and an introduction to the field of non-smooth dynamical systems. The unilateral constraints are modelled in the framework of set-valued force laws developed in the field of non-smooth mechanics. The embedding of these constitutive models in the dynamics of mechanical systems gives rises to dynamical models with impulsive phenomena. This book uses the mathematical framework of measure differential inclusions to formalise such models. The book proceeds with the presentation of stability results for measure differential inclusions. These stability results are then applied to nonlinear mechanical systems with unilateral constraints. The book closes with the study of the convergence property for a class of measure differential inclusions; a stability property for systems with time-varying inputs which is shown to be highly instrumental in the context of the control of mechanical systems with unilateral constraints. While the book presents a profound stability theory for mechanical systems with unilateral constraints, it also has a tutorial value on the modelling of such systems in the framework of measure differential inclusions. The work will be of interest to engineers, scientists and students working in the field of non-smooth mechanics and dynamics. 
650 0 |a Mechanical engineering. 
650 0 |a Mechanics, Applied. 
650 0 |a Multibody systems. 
650 0 |a Vibration. 
650 0 |a Computational intelligence. 
650 0 |a Mechanics. 
650 0 |a System theory. 
650 1 4 |a Mechanical Engineering. 
650 2 4 |a Engineering Mechanics. 
650 2 4 |a Multibody Systems and Mechanical Vibrations. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Classical Mechanics. 
650 2 4 |a Complex Systems. 
700 1 |a van de Wouw, Nathan.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642095696 
776 0 8 |i Printed edition:  |z 9783540846208 
776 0 8 |i Printed edition:  |z 9783540769743 
830 0 |a Lecture Notes in Applied and Computational Mechanics,  |x 1860-0816 ;  |v 36 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-76975-0  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)