Cargando…

Representation Theory and Complex Analysis Lectures given at the C.I.M.E. Summer School held in Venice, Italy, June 10-17, 2004 /

Six leading experts lecture on a wide spectrum of recent results on the subject of the title, providing both a solid reference and deep insights on current research activity. Michael Cowling presents a survey of various interactions between representation theory and harmonic analysis on semisimple g...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Cowling, Michael (Autor), Frenkel, Edward (Autor), Kashiwara, Masaki (Autor), Valette, Alain (Autor), Vogan, David A. (Autor), Wallach, Nolan R. (Autor)
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Casadio Tarabusi, Enrico (Editor ), D'Agnolo, Andrea (Editor ), Picardello, Massimo A. (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2008.
Edición:1st ed. 2008.
Colección:C.I.M.E. Foundation Subseries ; 1931
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-76892-0
003 DE-He213
005 20220112074534.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783540768920  |9 978-3-540-76892-0 
024 7 |a 10.1007/978-3-540-76892-0  |2 doi 
050 4 |a QA319-329.9 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT037000  |2 bisacsh 
072 7 |a PBKF  |2 thema 
082 0 4 |a 515.7  |2 23 
100 1 |a Cowling, Michael.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Representation Theory and Complex Analysis  |h [electronic resource] :  |b Lectures given at the C.I.M.E. Summer School held in Venice, Italy, June 10-17, 2004 /  |c by Michael Cowling, Edward Frenkel, Masaki Kashiwara, Alain Valette, David A. Vogan, Nolan R. Wallach ; edited by Enrico Casadio Tarabusi, Andrea D'Agnolo, Massimo A. Picardello. 
250 |a 1st ed. 2008. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2008. 
300 |a XII, 389 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a C.I.M.E. Foundation Subseries ;  |v 1931 
505 0 |a Applications of Representation Theory to Harmonic Analysis of Lie Groups (and Vice Versa) -- Ramifications of the Geometric Langlands Program -- Equivariant Derived Category and Representation of Real Semisimple Lie Groups -- Amenability and Margulis Super-Rigidity -- Unitary Representations and Complex Analysis -- Quantum Computing and Entanglement for Mathematicians. 
520 |a Six leading experts lecture on a wide spectrum of recent results on the subject of the title, providing both a solid reference and deep insights on current research activity. Michael Cowling presents a survey of various interactions between representation theory and harmonic analysis on semisimple groups and symmetric spaces. Alain Valette recalls the concept of amenability and shows how it is used in the proof of rigidity results for lattices of semisimple Lie groups. Edward Frenkel describes the geometric Langlands correspondence for complex algebraic curves, concentrating on the ramified case where a finite number of regular singular points is allowed. Masaki Kashiwara studies the relationship between the representation theory of real semisimple Lie groups and the geometry of the flag manifolds associated with the corresponding complex algebraic groups. David Vogan deals with the problem of getting unitary representations out of those arising from complex analysis, such as minimal globalizations realized on Dolbeault cohomology with compact support. Nolan Wallach illustrates how representation theory is related to quantum computing, focusing on the study of qubit entanglement. 
650 0 |a Functional analysis. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Harmonic analysis. 
650 0 |a Nonassociative rings. 
650 0 |a Global analysis (Mathematics). 
650 0 |a Manifolds (Mathematics). 
650 0 |a Functions of complex variables. 
650 1 4 |a Functional Analysis. 
650 2 4 |a Topological Groups and Lie Groups. 
650 2 4 |a Abstract Harmonic Analysis. 
650 2 4 |a Non-associative Rings and Algebras. 
650 2 4 |a Global Analysis and Analysis on Manifolds. 
650 2 4 |a Several Complex Variables and Analytic Spaces. 
700 1 |a Frenkel, Edward.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Kashiwara, Masaki.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Valette, Alain.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Vogan, David A.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Wallach, Nolan R.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Casadio Tarabusi, Enrico.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a D'Agnolo, Andrea.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Picardello, Massimo A.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540846123 
776 0 8 |i Printed edition:  |z 9783540768913 
830 0 |a C.I.M.E. Foundation Subseries ;  |v 1931 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-76892-0  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)