Cargando…

Standard Monomial Theory Invariant Theoretic Approach /

Schubert varieties lie at the cross roads of algebraic geometry, combinatorics, commutative algebra, and representation theory. They are an important class of subvarieties of flag varieties, interesting in their own right, and providing an inductive tool for studying flag varieties. The literature o...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Lakshmibai, V. (Autor), Raghavan, K. N. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2008.
Edición:1st ed. 2008.
Colección:Encyclopaedia of Mathematical Sciences ; 137
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-76757-2
003 DE-He213
005 20220116123500.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783540767572  |9 978-3-540-76757-2 
024 7 |a 10.1007/978-3-540-76757-2  |2 doi 
050 4 |a QA564-609 
072 7 |a PBMW  |2 bicssc 
072 7 |a MAT012010  |2 bisacsh 
072 7 |a PBMW  |2 thema 
082 0 4 |a 516.35  |2 23 
100 1 |a Lakshmibai, V.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Standard Monomial Theory  |h [electronic resource] :  |b Invariant Theoretic Approach /  |c by V. Lakshmibai, K. N. Raghavan. 
250 |a 1st ed. 2008. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2008. 
300 |a XIV, 266 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Encyclopaedia of Mathematical Sciences ;  |v 137 
505 0 |a Generalities on algebraic varieties -- Generalities on algebraic groups -- Grassmannian -- Determinantal varieties -- Symplectic Grassmannian -- Orthogonal Grassmannian -- The standard monomial theoretic basis -- Review of GIT -- Invariant theory -- SLn(K)-action -- SOn(K)-action -- Applications of standard monomial theory. 
520 |a Schubert varieties lie at the cross roads of algebraic geometry, combinatorics, commutative algebra, and representation theory. They are an important class of subvarieties of flag varieties, interesting in their own right, and providing an inductive tool for studying flag varieties. The literature on them is vast, for they are ubiquitous-they have been intensively studied over the last fifty years, from many different points of view and by many different authors. This book is mainly a detailed account of a particularly interesting instance of their occurrence: namely, in relation to classical invariant theory. More precisely, it is about the connection between the first and second fundamental theorems of classical invariant theory on the one hand and standard monomial theory for Schubert varieties in certain special flag varieties - the ordinary, orthogonal, and symplectic Grassmannians - on the other. Historically, this connection was the prime motivation for the development of standard monomial theory. Determinantal varieties and basic concepts of geometric invariant theory arise naturally in establishing the connection. The book also treats, in the last chapter, some other applications of standard monomial theory, e.g., to the study of certain naturally occurring affine algebraic varieties that, like determinantal varieties, can be realized as open parts of Schubert varieties. 
650 0 |a Algebraic geometry. 
650 0 |a Algebra. 
650 1 4 |a Algebraic Geometry. 
650 2 4 |a Algebra. 
700 1 |a Raghavan, K. N.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642095436 
776 0 8 |i Printed edition:  |z 9783540845881 
776 0 8 |i Printed edition:  |z 9783540767565 
830 0 |a Encyclopaedia of Mathematical Sciences ;  |v 137 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-76757-2  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)