Cargando…

Finite Element Methods for Engineering Sciences Theoretical Approach and Problem Solving Techniques /

This self-tutorial offers a concise yet thorough grounding in the mathematics necessary for successfully applying FEMs to practical problems in science and engineering. The unique approach first summarizes and outlines the finite-element mathematics in general and then, in the second and major part,...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Chaskalovic, Joel (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2008.
Edición:1st ed. 2008.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-76343-7
003 DE-He213
005 20220120050737.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783540763437  |9 978-3-540-76343-7 
024 7 |a 10.1007/978-3-540-76343-7  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Chaskalovic, Joel.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Finite Element Methods for Engineering Sciences  |h [electronic resource] :  |b Theoretical Approach and Problem Solving Techniques /  |c by Joel Chaskalovic. 
250 |a 1st ed. 2008. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2008. 
300 |a XII, 255 p. 35 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Summary of Courses on Finite Elements -- Some Fundamental Classes of Finite Elements -- Variational Formulations -- Finite Elements in Deformable Solid Body Mechanics -- Finite Elements Applied to Strength of Materials -- Finite Elements Applied to Non Linear Problems. 
520 |a This self-tutorial offers a concise yet thorough grounding in the mathematics necessary for successfully applying FEMs to practical problems in science and engineering. The unique approach first summarizes and outlines the finite-element mathematics in general and then, in the second and major part, formulates problem examples that clearly demonstrate the techniques of functional analysis via numerous and diverse exercises. The solutions of the problems are given directly afterwards. Using this approach, the author motivates and encourages the reader to actively acquire the knowledge of finite- element methods instead of passively absorbing the material, as in most standard textbooks. The enlarged English-language edition, based on the original French, also contains a chapter on the approximation steps derived from the description of nature with differential equations and then applied to the specific model to be used. Furthermore, an introduction to tensor calculus using distribution theory offers further insight for readers with different mathematical backgrounds. 
650 0 |a Computational intelligence. 
650 0 |a Engineering mathematics. 
650 0 |a Engineering-Data processing. 
650 0 |a Mathematics-Data processing. 
650 0 |a Mechanics, Applied. 
650 0 |a Solids. 
650 1 4 |a Computational Intelligence. 
650 2 4 |a Mathematical and Computational Engineering Applications. 
650 2 4 |a Computational Science and Engineering. 
650 2 4 |a Solid Mechanics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642095207 
776 0 8 |i Printed edition:  |z 9783540869344 
776 0 8 |i Printed edition:  |z 9783540763420 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-76343-7  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)