Cargando…

Machine Learning in Document Analysis and Recognition

The objective of Document Analysis and Recognition (DAR) is to recognize the text and graphicalcomponents of a document and to extract information. With ?rst papers dating back to the 1960's, DAR is a mature but still gr- ing research?eld with consolidated and known techniques. Optical Characte...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Marinai, Simone (Editor ), Fujisawa, Hiromichi (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2008.
Edición:1st ed. 2008.
Colección:Studies in Computational Intelligence, 90
Temas:
Acceso en línea:Texto Completo
Tabla de Contenidos:
  • to Document Analysis and Recognition
  • Structure Extraction in Printed Documents Using Neural Approaches
  • Machine Learning for Reading Order Detection in Document Image Understanding
  • Decision-Based Specification and Comparison of Table Recognition Algorithms
  • Machine Learning for Digital Document Processing: from Layout Analysis to Metadata Extraction
  • Classification and Learning Methods for Character Recognition: Advances and Remaining Problems
  • Combining Classifiers with Informational Confidence
  • Self-Organizing Maps for Clustering in Document Image Analysis
  • Adaptive and Interactive Approaches to Document Analysis
  • Cursive Character Segmentation Using Neural Network Techniques
  • Multiple Hypotheses Document Analysis
  • Learning Matching Score Dependencies for Classifier Combination
  • Perturbation Models for Generating Synthetic Training Data in Handwriting Recognition
  • Review of Classifier Combination Methods
  • Machine Learning for Signature Verification
  • Off-line Writer Identification and Verification Using Gaussian Mixture Models.