|
|
|
|
LEADER |
00000nam a22000005i 4500 |
001 |
978-3-540-75549-4 |
003 |
DE-He213 |
005 |
20220115070337.0 |
007 |
cr nn 008mamaa |
008 |
100301s2007 gw | s |||| 0|eng d |
020 |
|
|
|a 9783540755494
|9 978-3-540-75549-4
|
024 |
7 |
|
|a 10.1007/978-3-540-75549-4
|2 doi
|
050 |
|
4 |
|a QA76.9.D35
|
050 |
|
4 |
|a Q350-390
|
072 |
|
7 |
|a UMB
|2 bicssc
|
072 |
|
7 |
|a GPF
|2 bicssc
|
072 |
|
7 |
|a COM031000
|2 bisacsh
|
072 |
|
7 |
|a UMB
|2 thema
|
072 |
|
7 |
|a GPF
|2 thema
|
082 |
0 |
4 |
|a 005.73
|2 23
|
082 |
0 |
4 |
|a 003.54
|2 23
|
245 |
1 |
0 |
|a Knowledge Discovery in Inductive Databases
|h [electronic resource] :
|b 5th International Workshop, KDID 2006 Berlin, Germany, September 18th, 2006 Revised Selected and Invited Papers /
|c edited by Saso Dzeroski, Jan Struyf.
|
250 |
|
|
|a 1st ed. 2007.
|
264 |
|
1 |
|a Berlin, Heidelberg :
|b Springer Berlin Heidelberg :
|b Imprint: Springer,
|c 2007.
|
300 |
|
|
|a X, 301 p.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a Information Systems and Applications, incl. Internet/Web, and HCI ;
|v 4747
|
505 |
0 |
|
|a Invited Talk -- Value, Cost, and Sharing: Open Issues in Constrained Clustering -- Contributed Papers -- Mining Bi-sets in Numerical Data -- Extending the Soft Constraint Based Mining Paradigm -- On Interactive Pattern Mining from Relational Databases -- Analysis of Time Series Data with Predictive Clustering Trees -- Integrating Decision Tree Learning into Inductive Databases -- Using a Reinforced Concept Lattice to Incrementally Mine Association Rules from Closed Itemsets -- An Integrated Multi-task Inductive Database VINLEN: Initial Implementation and Early Results -- Beam Search Induction and Similarity Constraints for Predictive Clustering Trees -- Frequent Pattern Mining and Knowledge Indexing Based on Zero-Suppressed BDDs -- Extracting Trees of Quantitative Serial Episodes -- IQL: A Proposal for an Inductive Query Language -- Mining Correct Properties in Incomplete Databases -- Efficient Mining Under Rich Constraints Derived from Various Datasets -- Three Strategies for Concurrent Processing of Frequent Itemset Queries Using FP-Growth -- Discussion Paper -- Towards a General Framework for Data Mining.
|
650 |
|
0 |
|a Data structures (Computer science).
|
650 |
|
0 |
|a Information theory.
|
650 |
|
0 |
|a Database management.
|
650 |
|
0 |
|a Artificial intelligence.
|
650 |
1 |
4 |
|a Data Structures and Information Theory.
|
650 |
2 |
4 |
|a Database Management.
|
650 |
2 |
4 |
|a Artificial Intelligence.
|
700 |
1 |
|
|a Dzeroski, Saso.
|e editor.
|4 edt
|4 http://id.loc.gov/vocabulary/relators/edt
|
700 |
1 |
|
|a Struyf, Jan.
|e editor.
|4 edt
|4 http://id.loc.gov/vocabulary/relators/edt
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer Nature eBook
|
776 |
0 |
8 |
|i Printed edition:
|z 9783540844846
|
776 |
0 |
8 |
|i Printed edition:
|z 9783540755487
|
830 |
|
0 |
|a Information Systems and Applications, incl. Internet/Web, and HCI ;
|v 4747
|
856 |
4 |
0 |
|u https://doi.uam.elogim.com/10.1007/978-3-540-75549-4
|z Texto Completo
|
912 |
|
|
|a ZDB-2-SCS
|
912 |
|
|
|a ZDB-2-SXCS
|
912 |
|
|
|a ZDB-2-LNC
|
950 |
|
|
|a Computer Science (SpringerNature-11645)
|
950 |
|
|
|a Computer Science (R0) (SpringerNature-43710)
|