Cargando…

Knowledge Discovery in Inductive Databases 5th International Workshop, KDID 2006 Berlin, Germany, September 18th, 2006 Revised Selected and Invited Papers /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Dzeroski, Saso (Editor ), Struyf, Jan (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2007.
Edición:1st ed. 2007.
Colección:Information Systems and Applications, incl. Internet/Web, and HCI ; 4747
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-75549-4
003 DE-He213
005 20220115070337.0
007 cr nn 008mamaa
008 100301s2007 gw | s |||| 0|eng d
020 |a 9783540755494  |9 978-3-540-75549-4 
024 7 |a 10.1007/978-3-540-75549-4  |2 doi 
050 4 |a QA76.9.D35 
050 4 |a Q350-390 
072 7 |a UMB  |2 bicssc 
072 7 |a GPF  |2 bicssc 
072 7 |a COM031000  |2 bisacsh 
072 7 |a UMB  |2 thema 
072 7 |a GPF  |2 thema 
082 0 4 |a 005.73  |2 23 
082 0 4 |a 003.54  |2 23 
245 1 0 |a Knowledge Discovery in Inductive Databases  |h [electronic resource] :  |b 5th International Workshop, KDID 2006 Berlin, Germany, September 18th, 2006 Revised Selected and Invited Papers /  |c edited by Saso Dzeroski, Jan Struyf. 
250 |a 1st ed. 2007. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2007. 
300 |a X, 301 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Information Systems and Applications, incl. Internet/Web, and HCI ;  |v 4747 
505 0 |a Invited Talk -- Value, Cost, and Sharing: Open Issues in Constrained Clustering -- Contributed Papers -- Mining Bi-sets in Numerical Data -- Extending the Soft Constraint Based Mining Paradigm -- On Interactive Pattern Mining from Relational Databases -- Analysis of Time Series Data with Predictive Clustering Trees -- Integrating Decision Tree Learning into Inductive Databases -- Using a Reinforced Concept Lattice to Incrementally Mine Association Rules from Closed Itemsets -- An Integrated Multi-task Inductive Database VINLEN: Initial Implementation and Early Results -- Beam Search Induction and Similarity Constraints for Predictive Clustering Trees -- Frequent Pattern Mining and Knowledge Indexing Based on Zero-Suppressed BDDs -- Extracting Trees of Quantitative Serial Episodes -- IQL: A Proposal for an Inductive Query Language -- Mining Correct Properties in Incomplete Databases -- Efficient Mining Under Rich Constraints Derived from Various Datasets -- Three Strategies for Concurrent Processing of Frequent Itemset Queries Using FP-Growth -- Discussion Paper -- Towards a General Framework for Data Mining. 
650 0 |a Data structures (Computer science). 
650 0 |a Information theory. 
650 0 |a Database management. 
650 0 |a Artificial intelligence. 
650 1 4 |a Data Structures and Information Theory. 
650 2 4 |a Database Management. 
650 2 4 |a Artificial Intelligence. 
700 1 |a Dzeroski, Saso.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Struyf, Jan.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540844846 
776 0 8 |i Printed edition:  |z 9783540755487 
830 0 |a Information Systems and Applications, incl. Internet/Web, and HCI ;  |v 4747 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-75549-4  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
912 |a ZDB-2-LNC 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)