Cargando…

Quantitative Information Fusion for Hydrological Sciences

In a rapidly evolving world of knowledge and technology, do you ever wonder how hydrology is catching up? This book takes the angle of computational hydrology and envisions one of the future directions, namely, quantitative integration of high-quality hydrologic field data with geologic, hydrologic,...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Cai, Xing (Editor ), Jim Yeh, T.-C (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2008.
Edición:1st ed. 2008.
Colección:Studies in Computational Intelligence, 79
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-75384-1
003 DE-He213
005 20220119005059.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783540753841  |9 978-3-540-75384-1 
024 7 |a 10.1007/978-3-540-75384-1  |2 doi 
050 4 |a QE1-996.5 
072 7 |a RBG  |2 bicssc 
072 7 |a SCI081000  |2 bisacsh 
072 7 |a RBG  |2 thema 
082 0 4 |a 551  |2 23 
245 1 0 |a Quantitative Information Fusion for Hydrological Sciences  |h [electronic resource] /  |c edited by Xing Cai, T.-C. Jim Yeh. 
250 |a 1st ed. 2008. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2008. 
300 |a IX, 218 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 79 
505 0 |a Data Fusion Methods for Integrating Data-driven Hydrological Models -- A New Paradigm for Groundwater Modeling -- Information Fusion using the Kalman Filter based on Karhunen-Loève Decomposition -- Trajectory-Based Methods for Modeling and Characterization -- The Role of Streamline Models for Dynamic Data Assimilation in Petroleum Engineering and Hydrogeology -- Information Fusion in Regularized Inversion of Tomographic Pumping Tests -- Advancing the Use of Satellite Rainfall Datasets for Flood Prediction in Ungauged Basins: The Role of Scale, Hydrologic Process Controls and the Global Precipitation Measurement Mission -- Integrated Methods for Urban Groundwater Management Considering Subsurface Heterogeneity. 
520 |a In a rapidly evolving world of knowledge and technology, do you ever wonder how hydrology is catching up? This book takes the angle of computational hydrology and envisions one of the future directions, namely, quantitative integration of high-quality hydrologic field data with geologic, hydrologic, chemical, atmospheric, and biological information to characterize and predict natural systems in hydrological sciences. Intelligent computation and information fusion are the key words. The aim is to provide both established scientists and graduate students with a summary of recent developments in this topic. The chapters of this edited volume cover some of the most important ingredients for quantitative hydrological information fusion, including data fusion techniques, interactive computational environments, and supporting mathematical and numerical methods. Real-life applications of hydrological information fusion are also addressed. 
650 0 |a Geology. 
650 0 |a Engineering mathematics. 
650 0 |a Engineering-Data processing. 
650 0 |a Water. 
650 0 |a Hydrology. 
650 0 |a Geotechnical engineering. 
650 0 |a Artificial intelligence. 
650 1 4 |a Geology. 
650 2 4 |a Mathematical and Computational Engineering Applications. 
650 2 4 |a Water. 
650 2 4 |a Geotechnical Engineering and Applied Earth Sciences. 
650 2 4 |a Artificial Intelligence. 
700 1 |a Cai, Xing.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Jim Yeh, T.-C.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642094613 
776 0 8 |i Printed edition:  |z 9783540844495 
776 0 8 |i Printed edition:  |z 9783540753834 
830 0 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 79 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-75384-1  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)