Cargando…

Foundations of Rule Learning

Rules - the clearest, most explored and best understood form of knowledge representation - are particularly important for data mining, as they offer the best tradeoff between human and machine understandability. This book presents the fundamentals of rule learning as investigated in classical machin...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Fürnkranz, Johannes (Autor), Gamberger, Dragan (Autor), Lavrač, Nada (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2012.
Edición:1st ed. 2012.
Colección:Cognitive Technologies,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-75197-7
003 DE-He213
005 20220118103855.0
007 cr nn 008mamaa
008 121116s2012 gw | s |||| 0|eng d
020 |a 9783540751977  |9 978-3-540-75197-7 
024 7 |a 10.1007/978-3-540-75197-7  |2 doi 
050 4 |a QA76.9.D343 
072 7 |a UNF  |2 bicssc 
072 7 |a UYQE  |2 bicssc 
072 7 |a COM021030  |2 bisacsh 
072 7 |a UNF  |2 thema 
072 7 |a UYQE  |2 thema 
082 0 4 |a 006.312  |2 23 
100 1 |a Fürnkranz, Johannes.  |e author.  |0 (orcid)0000-0002-1207-0159  |1 https://orcid.org/0000-0002-1207-0159  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Foundations of Rule Learning  |h [electronic resource] /  |c by Johannes Fürnkranz, Dragan Gamberger, Nada Lavrač. 
250 |a 1st ed. 2012. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2012. 
300 |a XVIII, 334 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Cognitive Technologies,  |x 2197-6635 
505 0 |a Part I. Introduction to Rule Learning -- Machine Learning and Data Mining -- Propositional Rule Learning -- Relational Rule Learning -- Part II. Elements of Rule Learning -- Formal Framework for Rule Analysis -- Features -- Heuristics -- Pruning of Rules and Rule Sets -- Survey of Classification Rule Learning Systems Through the Analysis of Rule Learning Elements Used -- Part III. Selected Topics in Predictive Induction -- Part IV Selected Techniques and Applications. 
520 |a Rules - the clearest, most explored and best understood form of knowledge representation - are particularly important for data mining, as they offer the best tradeoff between human and machine understandability. This book presents the fundamentals of rule learning as investigated in classical machine learning and modern data mining. It introduces a feature-based view, as a unifying framework for propositional and relational rule learning, thus bridging the gap between attribute-value learning and inductive logic programming, and providing complete coverage of most important elements of rule learning. The book can be used as a textbook for teaching machine learning, as well as a comprehensive reference to research in the field of inductive rule learning. As such, it targets students, researchers and developers of rule learning algorithms, presenting the fundamental rule learning concepts in sufficient breadth and depth to enable the reader to understand, develop and apply rule learning techniques to real-world data. 
650 0 |a Data mining. 
650 0 |a Artificial intelligence. 
650 0 |a Pattern recognition systems. 
650 0 |a Computer science. 
650 0 |a Statistics . 
650 1 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Automated Pattern Recognition. 
650 2 4 |a Theory of Computation. 
650 2 4 |a Statistics in Engineering, Physics, Computer Science, Chemistry and Earth Sciences. 
700 1 |a Gamberger, Dragan.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Lavrač, Nada.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540868903 
776 0 8 |i Printed edition:  |z 9783642430466 
776 0 8 |i Printed edition:  |z 9783540751960 
830 0 |a Cognitive Technologies,  |x 2197-6635 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-75197-7  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)