Cargando…

Basic Bundle Theory and K-Cohomology Invariants

Based on several recent courses given to mathematical physics students, this volume is an introduction to bundle theory with the aim to provide newcomers to the field with solid foundations in topological K-theory. A fundamental theme, emphasized in the book, centers around the gluing of local bundl...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Husemöller, Dale (Autor), Joachim, Michael (Autor), Jurco, Branislav (Autor), Schottenloher, Martin (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2008.
Edición:1st ed. 2008.
Colección:Lecture Notes in Physics, 726
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-74956-1
003 DE-He213
005 20220114191221.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783540749561  |9 978-3-540-74956-1 
024 7 |a 10.1007/978-3-540-74956-1  |2 doi 
050 4 |a QA169 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
072 7 |a PBF  |2 thema 
082 0 4 |a 512.6  |2 23 
100 1 |a Husemöller, Dale.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Basic Bundle Theory and K-Cohomology Invariants  |h [electronic resource] /  |c by Dale Husemöller, Michael Joachim, Branislav Jurco, Martin Schottenloher. 
250 |a 1st ed. 2008. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2008. 
300 |a XV, 340 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Physics,  |x 1616-6361 ;  |v 726 
505 0 |a Physical Background to the K-Theory Classification of D-Branes: Introduction and References -- Physical Background to the K-Theory Classification of D-Branes: Introduction and References -- Bundles over a Space and Modules over an Algebra -- Generalities on Bundles and Categories -- Vector Bundles -- Relation Between Vector Bundles, Projective Modules, and Idempotents -- K-Theory of Vector Bundles, of Modules, and of Idempotents -- Principal Bundles and Sections of Fibre Bundles: Reduction of the Structure and the Gauge Group I -- Homotopy Classification of Bundles and Cohomology: Classifying Spaces -- Homotopy Classes of Maps and the Homotopy Groups -- The Milnor Construction: Homotopy Classification of Principal Bundles -- Fibrations and Bundles: Gauge Group II -- Cohomology Classes as Homotopy Classes: CW-Complexes -- Basic Characteristic Classes -- Characteristic Classes of Manifolds -- Spin Structures -- Versions of K-Theory and Bott Periodicity -- G-Spaces, G-Bundles, and G-Vector Bundles -- Equivariant K-Theory Functor KG : Periodicity, Thom Isomorphism, Localization, and Completion -- Bott Periodicity Maps and Clifford Algebras -- Gram-Schmidt Process, Iwasawa Decomposition, and Reduction of Structure in Principal Bundles -- Topological Algebras: G-Equivariance and KK-Theory -- Algebra Bundles: Twisted K-Theory -- Isomorphism Classification of Operator Algebra Bundles -- Brauer Group of Matrix Algebra Bundles and K-Groups -- Analytic Definition of Twisted K-Theory -- The Atiyah-Hirzebruch Spectral Sequence in K-Theory -- Twisted Equivariant K-Theory and the Verlinde Algebra -- Gerbes and the Three Dimensional Integral Cohomology Classes -- Bundle Gerbes -- Category Objects and Groupoid Gerbes -- Stacks and Gerbes -- Erratum. 
520 |a Based on several recent courses given to mathematical physics students, this volume is an introduction to bundle theory with the aim to provide newcomers to the field with solid foundations in topological K-theory. A fundamental theme, emphasized in the book, centers around the gluing of local bundle data related to bundles into a global object. One renewed motivation for studying this subject, which has developed for almost 50 years in many directions, comes from quantum field theory, especially string theory, where topological invariants play an important role. 
650 0 |a Algebra, Homological. 
650 0 |a Mathematical physics. 
650 1 4 |a Category Theory, Homological Algebra. 
650 2 4 |a Mathematical Methods in Physics. 
700 1 |a Joachim, Michael.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Jurco, Branislav.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Schottenloher, Martin.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540843863 
776 0 8 |i Printed edition:  |z 9783642094361 
776 0 8 |i Printed edition:  |z 9783540749554 
830 0 |a Lecture Notes in Physics,  |x 1616-6361 ;  |v 726 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-74956-1  |z Texto Completo 
912 |a ZDB-2-PHA 
912 |a ZDB-2-SXP 
912 |a ZDB-2-LNP 
950 |a Physics and Astronomy (SpringerNature-11651) 
950 |a Physics and Astronomy (R0) (SpringerNature-43715)