Cargando…

Energy Minimization Methods in Computer Vision and Pattern Recognition 6th International Conference, EMMCVPR 2007, Ezhou, China, August 27-29, 2007, Proceedings /

This volume contains the papers presented at the Sixth International Conference on Energy Minimization Methods on Computer Vision and Pattern Recognition (EMMCVPR 2007), held at the Lotus Hill Institute, Ezhou, Hubei, China, August 27-29, 2007. The motivation for this conference is the realization t...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Yuille, Alan L. (Editor ), Zhu, Song-Chun (Editor ), Cremers, Daniel (Editor ), Wang, Yongtian (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2007.
Edición:1st ed. 2007.
Colección:Image Processing, Computer Vision, Pattern Recognition, and Graphics ; 4679
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-74198-5
003 DE-He213
005 20220115054647.0
007 cr nn 008mamaa
008 100301s2007 gw | s |||| 0|eng d
020 |a 9783540741985  |9 978-3-540-74198-5 
024 7 |a 10.1007/978-3-540-74198-5  |2 doi 
050 4 |a TA1634 
072 7 |a UYQV  |2 bicssc 
072 7 |a COM012000  |2 bisacsh 
072 7 |a UYQV  |2 thema 
082 0 4 |a 006.37  |2 23 
245 1 0 |a Energy Minimization Methods in Computer Vision and Pattern Recognition  |h [electronic resource] :  |b 6th International Conference, EMMCVPR 2007, Ezhou, China, August 27-29, 2007, Proceedings /  |c edited by Alan L. Yuille, Song-Chun Zhu, Daniel Cremers, Yongtian Wang. 
250 |a 1st ed. 2007. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2007. 
300 |a XII, 500 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Image Processing, Computer Vision, Pattern Recognition, and Graphics ;  |v 4679 
505 0 |a Algorithms -- An Effective Multi-level Algorithm Based on Simulated Annealing for Bisecting Graph -- Szemerédi's Regularity Lemma and Its Applications to Pairwise Clustering and Segmentation -- Exact Solution of Permuted Submodular MinSum Problems -- Efficient Shape Matching Via Graph Cuts -- Simulating Classic Mosaics with Graph Cuts -- An Energy Minimisation Approach to Attributed Graph Regularisation -- Applications to Faces and Text -- A Pupil Localization Algorithm Based on Adaptive Gabor Filtering and Negative Radial Symmetry -- Decomposing Document Images by Heuristic Search -- CIDER: Corrected Inverse-Denoising Filter for Image Restoration -- Skew Detection Algorithm for Form Document Based on Elongate Feature -- Active Appearance Models Fitting with Occlusion -- Combining Left and Right Irises for Personal Authentication -- Image Parsing -- Bottom-Up Recognition and Parsing of the Human Body -- to a Large-Scale General Purpose Ground Truth Database: Methodology, Annotation Tool and Benchmarks -- An Automatic Portrait System Based on And-Or Graph Representation -- Object Category Recognition Using Generative Template Boosting -- Bayesian Inference for Layer Representation with Mixed Markov Random Field -- Image Processing -- Dichromatic Reflection Separation from a Single Image -- Noise Removal and Restoration Using Voting-Based Analysis and Image Segmentation Based on Statistical Models -- A Boosting Discriminative Model for Moving Cast Shadow Detection -- Motion Analysis -- An a Contrario Approach for Parameters Estimation of a Motion-Blurred Image -- Improved Object Tracking Using an Adaptive Colour Model -- Vehicle Tracking Based on Image Alignment in Aerial Videos -- Probabilistic Fiber Tracking Using Particle Filtering and Von Mises-Fisher Sampling -- Compositional Object Recognition, Segmentation, and Tracking in Video -- Bayesian Order-Adaptive Clustering for Video Segmentation -- Dynamic Feature Cascade for Multiple Object Tracking with Trackability Analysis -- Shape Analysis -- Discrete Skeleton Evolution -- Shape Classification Based on Skeleton Path Similarity -- Removing Shape-Preserving Transformations in Square-Root Elastic (SRE) Framework for Shape Analysis of Curves -- Shape Analysis of Open Curves in ?3 with Applications to Study of Fiber Tracts in DT-MRI Data -- Three-Dimensional Processing -- Energy-Based Reconstruction of 3D Curves for Quality Control -- 3D Computation of Gray Level Co-occurrence in Hyperspectral Image Cubes -- Continuous Global Optimization in Multiview 3D Reconstruction -- A New Bayesian Method for Range Image Segmentation -- Marked Point Process for Vascular Tree Extraction on Angiogram -- Surface Reconstruction from LiDAR Data with Extended Snake Theory. 
520 |a This volume contains the papers presented at the Sixth International Conference on Energy Minimization Methods on Computer Vision and Pattern Recognition (EMMCVPR 2007), held at the Lotus Hill Institute, Ezhou, Hubei, China, August 27-29, 2007. The motivation for this conference is the realization that many problems in computer vision and pattern recognition can be formulated in terms of probabilistic inference or optimization of energy functions. EMMCVPR 2007 addressed the critical issues of representation, learning, and inference. Important new themes include pr- abilistic grammars, image parsing, and the use of datasets with ground-truth to act as benchmarks for evaluating algorithms and as a way to train learning algorithms. Other themes include the development of efficient inference algorithms using advanced techniques from statistics, computer science, and applied mathematics. We received 140 submissions for this workshop. Each paper was reviewed by three committee members. Based on these reviews we selected 22 papers for oral presen- tion and 15 papers for poster presentation. This book makes no distinction between oral and poster papers. We have organized these papers in seven sections on al- rithms, applications, image parsing, image processing, motion, shape, and thr- dimensional processing. Finally, we thank those people who helped make this workshop happen. We - knowledge the Program Committee for their help in reviewing the papers. 
650 0 |a Computer vision. 
650 0 |a Pattern recognition systems. 
650 0 |a Artificial intelligence. 
650 0 |a Computer graphics. 
650 0 |a Algorithms. 
650 0 |a Data mining. 
650 1 4 |a Computer Vision. 
650 2 4 |a Automated Pattern Recognition. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Computer Graphics. 
650 2 4 |a Algorithms. 
650 2 4 |a Data Mining and Knowledge Discovery. 
700 1 |a Yuille, Alan L.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Zhu, Song-Chun.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Cremers, Daniel.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Wang, Yongtian.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540842187 
776 0 8 |i Printed edition:  |z 9783540741954 
830 0 |a Image Processing, Computer Vision, Pattern Recognition, and Graphics ;  |v 4679 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-74198-5  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
912 |a ZDB-2-LNC 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)