Cargando…

Perspectives of Neural-Symbolic Integration

The human brain possesses the remarkable capability of understanding, interpreting, and producing language, structures, and logic. Unlike their biological counterparts, artificial neural networks do not form such a close liason with symbolic reasoning: logic-based inference mechanisms and statistica...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Hammer, Barbara (Editor ), Hitzler, Pascal (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2007.
Edición:1st ed. 2007.
Colección:Studies in Computational Intelligence, 77
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-73954-8
003 DE-He213
005 20220117083006.0
007 cr nn 008mamaa
008 100301s2007 gw | s |||| 0|eng d
020 |a 9783540739548  |9 978-3-540-73954-8 
024 7 |a 10.1007/978-3-540-73954-8  |2 doi 
050 4 |a TA329-348 
050 4 |a TA345-345.5 
072 7 |a TBJ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a TBJ  |2 thema 
082 0 4 |a 620  |2 23 
245 1 0 |a Perspectives of Neural-Symbolic Integration  |h [electronic resource] /  |c edited by Barbara Hammer, Pascal Hitzler. 
250 |a 1st ed. 2007. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2007. 
300 |a XIII, 319 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 77 
505 0 |a Structured Data and Neural Networks -- Kernels for Strings and Graphs -- Comparing Sequence Classification Algorithms for Protein Subcellular Localization -- Mining Structure-Activity Relations in Biological Neural Networks using NeuronRank -- Adaptive Contextual Processing of Structured Data by Recursive Neural Networks: A Survey of Computational Properties -- Markovian Bias of Neural-based Architectures With Feedback Connections -- Time Series Prediction with the Self-Organizing Map: A Review -- A Dual Interaction Perspective for Robot Cognition: Grasping as a "Rosetta Stone" -- Logic and Neural Networks -- SHRUTI: A Neurally Motivated Architecture for Rapid, Scalable Inference -- The Core Method: Connectionist Model Generation for First-Order Logic Programs -- Learning Models of Predicate Logical Theories with Neural Networks Based on Topos Theory -- Advances in Neural-Symbolic Learning Systems: Modal and Temporal Reasoning -- Connectionist Representation of Multi-Valued Logic Programs. 
520 |a The human brain possesses the remarkable capability of understanding, interpreting, and producing language, structures, and logic. Unlike their biological counterparts, artificial neural networks do not form such a close liason with symbolic reasoning: logic-based inference mechanisms and statistical machine learning constitute two major and very different paradigms in artificial intelligence with complementary strengths and weaknesses. Modern application scenarios in robotics, bioinformatics, language processing, etc., however require both the efficiency and noise-tolerance of statistical models and the generalization ability and high-level modelling of structural inference meachanisms. A variety of approaches has therefore been proposed for combining the two paradigms. This carefully edited volume contains state-of-the-art contributions in neural-symbolic integration, covering `loose' coupling by means of structure kernels or recursive models as well as `strong' coupling of logic and neural networks. It brings together a representative selection of results presented by some of the top researchers in the field, covering theoretical foundations, algorithmic design, and state-of-the-art applications in robotics and bioinformatics. 
650 0 |a Engineering mathematics. 
650 0 |a Engineering-Data processing. 
650 0 |a Artificial intelligence. 
650 1 4 |a Mathematical and Computational Engineering Applications. 
650 2 4 |a Artificial Intelligence. 
700 1 |a Hammer, Barbara.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Hitzler, Pascal.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540841722 
776 0 8 |i Printed edition:  |z 9783642093227 
776 0 8 |i Printed edition:  |z 9783540739531 
830 0 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 77 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-73954-8  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)