Cargando…

Generalized Curvatures

The central object of this book is the measure of geometric quantities describing N a subset of the Euclidean space (E ,), endowed with its standard scalar product. Let us state precisely what we mean by a geometric quantity. Consider a subset N S of points of the N-dimensional Euclidean space E , e...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Morvan, Jean-Marie (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2008.
Edición:1st ed. 2008.
Colección:Geometry and Computing, 2
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-73792-6
003 DE-He213
005 20220120030255.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783540737926  |9 978-3-540-73792-6 
024 7 |a 10.1007/978-3-540-73792-6  |2 doi 
050 4 |a QA641-670 
072 7 |a PBMP  |2 bicssc 
072 7 |a MAT012030  |2 bisacsh 
072 7 |a PBMP  |2 thema 
082 0 4 |a 516.36  |2 23 
100 1 |a Morvan, Jean-Marie.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Generalized Curvatures  |h [electronic resource] /  |c by Jean-Marie Morvan. 
250 |a 1st ed. 2008. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2008. 
300 |a XI, 266 p. 107 illus., 36 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Geometry and Computing,  |x 1866-6809 ;  |v 2 
505 0 |a Motivations -- Motivation: Curves -- Motivation: Surfaces -- Background: Metrics and Measures -- Distance and Projection -- Elements of Measure Theory -- Background: Polyhedra and Convex Subsets -- Polyhedra -- Convex Subsets -- Background: Classical Tools in Differential Geometry -- Differential Forms and Densities on EN -- Measures on Manifolds -- Background on Riemannian Geometry -- Riemannian Submanifolds -- Currents -- On Volume -- Approximation of the Volume -- Approximation of the Length of Curves -- Approximation of the Area of Surfaces -- The Steiner Formula -- The Steiner Formula for Convex Subsets -- Tubes Formula -- Subsets of Positive Reach -- The Theory of Normal Cycles -- Invariant Forms -- The Normal Cycle -- Curvature Measures of Geometric Sets -- Second Fundamental Measure -- Applications to Curves and Surfaces -- Curvature Measures in E2 -- Curvature Measures in E3 -- Approximation of the Curvature of Curves -- Approximation of the Curvatures of Surfaces -- On Restricted Delaunay Triangulations. 
520 |a The central object of this book is the measure of geometric quantities describing N a subset of the Euclidean space (E ,), endowed with its standard scalar product. Let us state precisely what we mean by a geometric quantity. Consider a subset N S of points of the N-dimensional Euclidean space E , endowed with its standard N scalar product. LetG be the group of rigid motions of E . We say that a 0 quantity Q(S) associated toS is geometric with respect toG if the corresponding 0 quantity Q[g(S)] associated to g(S) equals Q(S), for all g?G . For instance, the 0 diameter ofS and the area of the convex hull ofS are quantities geometric with respect toG . But the distance from the origin O to the closest point ofS is not, 0 since it is not invariant under translations ofS. It is important to point out that the property of being geometric depends on the chosen group. For instance, ifG is the 1 N group of projective transformations of E , then the property ofS being a circle is geometric forG but not forG , while the property of being a conic or a straight 0 1 line is geometric for bothG andG . This point of view may be generalized to any 0 1 subsetS of any vector space E endowed with a groupG acting on it. 
650 0 |a Geometry, Differential. 
650 0 |a Mathematics-Data processing. 
650 0 |a Image processing-Digital techniques. 
650 0 |a Computer vision. 
650 1 4 |a Differential Geometry. 
650 2 4 |a Computational Mathematics and Numerical Analysis. 
650 2 4 |a Computer Imaging, Vision, Pattern Recognition and Graphics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642093005 
776 0 8 |i Printed edition:  |z 9783540848400 
776 0 8 |i Printed edition:  |z 9783540737919 
830 0 |a Geometry and Computing,  |x 1866-6809 ;  |v 2 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-73792-6  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)