Principal Manifolds for Data Visualization and Dimension Reduction
In 1901, Karl Pearson invented Principal Component Analysis (PCA). Since then, PCA serves as a prototype for many other tools of data analysis, visualization and dimension reduction: Independent Component Analysis (ICA), Multidimensional Scaling (MDS), Nonlinear PCA (NLPCA), Self Organizing Maps (SO...
Clasificación: | Libro Electrónico |
---|---|
Autor Corporativo: | SpringerLink (Online service) |
Otros Autores: | Gorban, Alexander N. (Editor ), Kégl, Balázs (Editor ), Wunsch, Donald C. (Editor ), Zinovyev, Andrei (Editor ) |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2008.
|
Edición: | 1st ed. 2008. |
Colección: | Lecture Notes in Computational Science and Engineering,
58 |
Temas: | |
Acceso en línea: | Texto Completo |
Ejemplares similares
-
An Introduction to Data Analysis using Aggregation Functions in R
por: James, Simon
Publicado: (2016) -
Evolutionary Global Optimization, Manifolds and Applications
por: Aguiar e Oliveira Junior, Hime
Publicado: (2016) -
Mathematics of Uncertainty Ideas, Methods, Application Problems /
por: Bandemer, Hans
Publicado: (2006) -
Bayesian Prediction and Adaptive Sampling Algorithms for Mobile Sensor Networks Online Environmental Field Reconstruction in Space and Time /
por: Xu, Yunfei, et al.
Publicado: (2016) -
Product of Random Stochastic Matrices and Distributed Averaging
por: Touri, Behrouz
Publicado: (2012)