Cargando…

Principal Manifolds for Data Visualization and Dimension Reduction

In 1901, Karl Pearson invented Principal Component Analysis (PCA). Since then, PCA serves as a prototype for many other tools of data analysis, visualization and dimension reduction: Independent Component Analysis (ICA), Multidimensional Scaling (MDS), Nonlinear PCA (NLPCA), Self Organizing Maps (SO...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Gorban, Alexander N. (Editor ), Kégl, Balázs (Editor ), Wunsch, Donald C. (Editor ), Zinovyev, Andrei (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2008.
Edición:1st ed. 2008.
Colección:Lecture Notes in Computational Science and Engineering, 58
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-73750-6
003 DE-He213
005 20220113121441.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783540737506  |9 978-3-540-73750-6 
024 7 |a 10.1007/978-3-540-73750-6  |2 doi 
050 4 |a TJ212-225 
072 7 |a TJFM  |2 bicssc 
072 7 |a GPFC  |2 bicssc 
072 7 |a TEC004000  |2 bisacsh 
072 7 |a TJFM  |2 thema 
082 0 4 |a 629.8312  |2 23 
082 0 4 |a 003  |2 23 
245 1 0 |a Principal Manifolds for Data Visualization and Dimension Reduction  |h [electronic resource] /  |c edited by Alexander N. Gorban, Balázs Kégl, Donald C. Wunsch, Andrei Zinovyev. 
250 |a 1st ed. 2008. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2008. 
300 |a XXIV, 340 p. 82 illus., 14 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Computational Science and Engineering,  |x 2197-7100 ;  |v 58 
505 0 |a Developments and Applications of Nonlinear Principal Component Analysis - a Review -- Nonlinear Principal Component Analysis: Neural Network Models and Applications -- Learning Nonlinear Principal Manifolds by Self-Organising Maps -- Elastic Maps and Nets for Approximating Principal Manifolds and Their Application to Microarray Data Visualization -- Topology-Preserving Mappings for Data Visualisation -- The Iterative Extraction Approach to Clustering -- Representing Complex Data Using Localized Principal Components with Application to Astronomical Data -- Auto-Associative Models, Nonlinear Principal Component Analysis, Manifolds and Projection Pursuit -- Beyond The Concept of Manifolds: Principal Trees, Metro Maps, and Elastic Cubic Complexes -- Diffusion Maps - a Probabilistic Interpretation for Spectral Embedding and Clustering Algorithms -- On Bounds for Diffusion, Discrepancy and Fill Distance Metrics -- Geometric Optimization Methods for the Analysis of Gene Expression Data -- Dimensionality Reduction and Microarray Data -- PCA and K-Means Decipher Genome. 
520 |a In 1901, Karl Pearson invented Principal Component Analysis (PCA). Since then, PCA serves as a prototype for many other tools of data analysis, visualization and dimension reduction: Independent Component Analysis (ICA), Multidimensional Scaling (MDS), Nonlinear PCA (NLPCA), Self Organizing Maps (SOM), etc. The book starts with the quote of the classical Pearson definition of PCA and includes reviews of various methods: NLPCA, ICA, MDS, embedding and clustering algorithms, principal manifolds and SOM. New approaches to NLPCA, principal manifolds, branching principal components and topology preserving mappings are described as well. Presentation of algorithms is supplemented by case studies, from engineering to astronomy, but mostly of biological data: analysis of microarray and metabolite data. The volume ends with a tutorial "PCA and K-means decipher genome". The book is meant to be useful for practitioners in applied data analysis in life sciences, engineering, physics and chemistry; it will also be valuable to PhD students and researchers in computer sciences, applied mathematics and statistics. 
650 0 |a Control engineering. 
650 0 |a Social sciences. 
650 0 |a Humanities. 
650 0 |a Mathematics-Data processing. 
650 0 |a Mathematical physics. 
650 0 |a Computational intelligence. 
650 0 |a Statistics . 
650 1 4 |a Control and Systems Theory. 
650 2 4 |a Humanities and Social Sciences. 
650 2 4 |a Computational Science and Engineering. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Statistics in Engineering, Physics, Computer Science, Chemistry and Earth Sciences. 
700 1 |a Gorban, Alexander N.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Kégl, Balázs.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Wunsch, Donald C.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Zinovyev, Andrei.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540841272 
776 0 8 |i Printed edition:  |z 9783540737490 
830 0 |a Lecture Notes in Computational Science and Engineering,  |x 2197-7100 ;  |v 58 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-73750-6  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)