Cargando…

Learning from Data Streams Processing Techniques in Sensor Networks /

Sensor networks consist of distributed autonomous devices that cooperatively monitor an environment. Sensors are equipped with capacities to store information in memory, process this information and communicate with their neighbors. Processing data streams generated from wireless sensor networks has...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Gama, João (Editor ), Gaber, Mohamed Medhat (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2007.
Edición:1st ed. 2007.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-73679-0
003 DE-He213
005 20220126110721.0
007 cr nn 008mamaa
008 100301s2007 gw | s |||| 0|eng d
020 |a 9783540736790  |9 978-3-540-73679-0 
024 7 |a 10.1007/3-540-73679-4  |2 doi 
050 4 |a QA75.5-76.95 
072 7 |a UNH  |2 bicssc 
072 7 |a UND  |2 bicssc 
072 7 |a COM030000  |2 bisacsh 
072 7 |a UNH  |2 thema 
072 7 |a UND  |2 thema 
082 0 4 |a 025.04  |2 23 
245 1 0 |a Learning from Data Streams  |h [electronic resource] :  |b Processing Techniques in Sensor Networks /  |c edited by João Gama, Mohamed Medhat Gaber. 
250 |a 1st ed. 2007. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2007. 
300 |a X, 244 p. 73 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Overview -- Sensor Networks: An Overview -- Data Stream Processing -- Data Stream Processing in Sensor Networks -- Data Stream Management Techniques in Sensor Networks -- Data Stream Management Systems and Architectures -- Querying of Sensor Data -- Aggregation and Summarization in Sensor Networks -- Sensory Data Monitoring -- Mining Sensor Network Data Streams -- Clustering Techniques in Sensor Networks -- Predictive Learning in Sensor Networks -- Tensor Analysis on Multi-aspect Streams -- Applications -- Knowledge Discovery from Sensor Data for Security Applications -- Knowledge Discovery from Sensor Data For Scientific Applications -- TinyOS Education with LEGO MINDSTORMS NXT. 
520 |a Sensor networks consist of distributed autonomous devices that cooperatively monitor an environment. Sensors are equipped with capacities to store information in memory, process this information and communicate with their neighbors. Processing data streams generated from wireless sensor networks has raised new research challenges over the last few years due to the huge numbers of data streams to be managed continuously and at a very high rate. The book provides the reader with a comprehensive overview of stream data processing, including famous prototype implementations like the Nile system and the TinyOS operating system. The set of chapters covers the state-of-art in data stream mining approaches using clustering, predictive learning, and tensor analysis techniques, and applying them to applications in security, the natural sciences, and education. This research monograph delivers to researchers and graduate students the state of the art in data stream processing in sensor networks. The huge bibliography offers an excellent starting point for further reading and future research. 
650 0 |a Information storage and retrieval systems. 
650 0 |a Computer networks . 
650 0 |a Signal processing. 
650 0 |a Telecommunication. 
650 0 |a Artificial intelligence. 
650 1 4 |a Information Storage and Retrieval. 
650 2 4 |a Computer Communication Networks. 
650 2 4 |a Signal, Speech and Image Processing . 
650 2 4 |a Communications Engineering, Networks. 
650 2 4 |a Artificial Intelligence. 
700 1 |a Gama, João.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Gaber, Mohamed Medhat.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642092855 
776 0 8 |i Printed edition:  |z 9783540841104 
776 0 8 |i Printed edition:  |z 9783540736783 
856 4 0 |u https://doi.uam.elogim.com/10.1007/3-540-73679-4  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)