Sumario: | This book addresses dynamical aspects of brain functions and cognition. Experimental evidence in humans and other mammalians indicates that complex neurodynamics is crucial for the emergence of higher-level cognition and consciousness. Dynamical neural systems with encoding in limit cycle and non-convergent attractors have gained increasing popularity in the past decade. The role of synchronization, desynchronization, and intermittent synchronization on cognition has been studied extensively by various authors, in particular by authors contributing to the present volume. This volume gives an overview of recent advances in this interdisciplinary field of cognitive and computer science related to dynamics of cognition, including experimental studies, dynamical modelling and interpretation of cognitive experiments, and theoretical approaches. The following topics are covered in this book: spatio-temporal dynamics of neural correlates of higher-level cognition; dynamical neural memories, including continuous and discrete approaches; mathematical and physical models of cognition; experiments on dynamical aspects of cognition; interpretation of normal and abnormal cognitive behaviours. This volume is of great interest for researchers and graduate students working on practical and modeling aspects of cognitive dynamics. It provides a comprehensive introduction to the field, which can be used as a supplementary textbook for cognitive science and computer science and engineering graduate courses covering intelligent behavior in biological and artificial systems.
|