Cargando…

Lectures in Supercomputational Neuroscience Dynamics in Complex Brain Networks /

Computational Neuroscience is a burgeoning field of research where only the combined effort of neuroscientists, biologists, psychologists, physicists, mathematicians, computer scientists, engineers and other specialists, e.g. from linguistics and medicine, seem to be able to expand the limits of our...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Graben, Peter (Editor ), Zhou, Changsong (Editor ), Thiel, Marco (Editor ), Kurths, Jürgen (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2008.
Edición:1st ed. 2008.
Colección:Understanding Complex Systems,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-73159-7
003 DE-He213
005 20220124075154.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783540731597  |9 978-3-540-73159-7 
024 7 |a 10.1007/978-3-540-73159-7  |2 doi 
050 4 |a QH505 
072 7 |a PHVN  |2 bicssc 
072 7 |a SCI009000  |2 bisacsh 
072 7 |a PHVN  |2 thema 
082 0 4 |a 571.4  |2 23 
245 1 0 |a Lectures in Supercomputational Neuroscience  |h [electronic resource] :  |b Dynamics in Complex Brain Networks /  |c edited by Peter Graben, Changsong Zhou, Marco Thiel, Jürgen Kurths. 
250 |a 1st ed. 2008. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2008. 
300 |a X, 377 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Understanding Complex Systems,  |x 1860-0840 
505 0 |a Neurophysiology -- Foundations of Neurophysics -- Synapses and Neurons: Basic Properties and Their Use in Recognizing Environmental Signals -- Complex Networks -- Structural Characterization of Networks Using the Cat Cortex as an Example -- Organization and Function of Complex Cortical Networks -- Synchronization Dynamics in Complex Networks -- Synchronization Analysis of Neuronal Networks by Means of Recurrence Plots -- Cognition and Higher Perception -- Neural and Cognitive Modeling with Networks of Leaky Integrator Units -- A Dynamic Model of the Macrocolumn -- Implementations -- Building a Large-Scale Computational Model of a Cortical Neuronal Network -- Maintaining Causality in Discrete Time Neuronal Network Simulations -- Sequential and Parallel Implementation of Networks -- Applications -- Parametric Studies on Networks of Morris-Lecar Neurons -- Traversing Scales: Large Scale Simulation of the Cat Cortex Using Single Neuron Models -- Parallel Computation of Large Neuronal Networks with Structured Connectivity. 
520 |a Computational Neuroscience is a burgeoning field of research where only the combined effort of neuroscientists, biologists, psychologists, physicists, mathematicians, computer scientists, engineers and other specialists, e.g. from linguistics and medicine, seem to be able to expand the limits of our knowledge. The present volume is an introduction, largely from the physicists' perspective, to the subject matter with in-depth contributions by system neuroscientists. A conceptual model for complex networks of neurons is introduced that incorporates many important features of the real brain, such as various types of neurons, various brain areas, inhibitory and excitatory coupling and the plasticity of the network. The computational implementation on supercomputers, which is introduced and discussed in detail in this book, will enable the readers to modify and adapt the algortihm for their own research. Worked-out examples of applications are presented for networks of Morris-Lecar neurons to model the cortical connections of a cat's brain, supported with data from experimental studies. This book is particularly suited for graduate students and nonspecialists from related fields with a general science background, looking for a substantial but "hands-on" introduction to the subject matter. 
650 0 |a Biophysics. 
650 0 |a System theory. 
650 0 |a Artificial intelligence. 
650 0 |a Neurosciences. 
650 0 |a Mathematical physics. 
650 1 4 |a Biophysics. 
650 2 4 |a Complex Systems. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Neuroscience. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
700 1 |a Graben, Peter.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Zhou, Changsong.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Thiel, Marco.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Kurths, Jürgen.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540839736 
776 0 8 |i Printed edition:  |z 9783642092169 
776 0 8 |i Printed edition:  |z 9783540731580 
830 0 |a Understanding Complex Systems,  |x 1860-0840 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-73159-7  |z Texto Completo 
912 |a ZDB-2-PHA 
912 |a ZDB-2-SXP 
950 |a Physics and Astronomy (SpringerNature-11651) 
950 |a Physics and Astronomy (R0) (SpringerNature-43715)