Cargando…

Affine Density in Wavelet Analysis

In wavelet analysis, irregular wavelet frames have recently come to the forefront of current research due to questions concerning the robustness and stability of wavelet algorithms. A major difficulty in the study of these systems is the highly sensitive interplay between geometric properties of a s...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kutyniok, Gitta (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2007.
Edición:1st ed. 2007.
Colección:Lecture Notes in Mathematics, 1914
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-72949-5
003 DE-He213
005 20220114111602.0
007 cr nn 008mamaa
008 100301s2007 gw | s |||| 0|eng d
020 |a 9783540729495  |9 978-3-540-72949-5 
024 7 |a 10.1007/978-3-540-72949-5  |2 doi 
050 4 |a QA403.5-404.5 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBKF  |2 thema 
082 0 4 |a 515.2433  |2 23 
100 1 |a Kutyniok, Gitta.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Affine Density in Wavelet Analysis  |h [electronic resource] /  |c by Gitta Kutyniok. 
250 |a 1st ed. 2007. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2007. 
300 |a XII, 143 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 1914 
505 0 |a Wavelet and Gabor Frames -- Weighted Affine Density -- Qualitative Density Conditions -- Quantitative Density Conditions -- Homogeneous Approximation Property -- Weighted Beurling Density and Shift-Invariant Gabor Systems. 
520 |a In wavelet analysis, irregular wavelet frames have recently come to the forefront of current research due to questions concerning the robustness and stability of wavelet algorithms. A major difficulty in the study of these systems is the highly sensitive interplay between geometric properties of a sequence of time-scale indices and frame properties of the associated wavelet systems. This volume provides the first thorough and comprehensive treatment of irregular wavelet frames by introducing and employing a new notion of affine density as a highly effective tool for examining the geometry of sequences of time-scale indices. Many of the results are new and published for the first time. Topics include: qualitative and quantitative density conditions for existence of irregular wavelet frames, non-existence of irregular co-affine frames, the Nyquist phenomenon for wavelet systems, and approximation properties of irregular wavelet frames. 
650 0 |a Fourier analysis. 
650 0 |a Computer science-Mathematics. 
650 1 4 |a Fourier Analysis. 
650 2 4 |a Mathematical Applications in Computer Science. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540839194 
776 0 8 |i Printed edition:  |z 9783540729167 
830 0 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 1914 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-72949-5  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)