Cargando…

Learning Theory 20th Annual Conference on Learning Theory, COLT 2007, San Diego, CA, USA, June 13-15, 2007, Proceedings /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Bshouty, Nader (Editor ), Gentile, Claudio (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2007.
Edición:1st ed. 2007.
Colección:Lecture Notes in Artificial Intelligence, 4539
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-72927-3
003 DE-He213
005 20221012204134.0
007 cr nn 008mamaa
008 100301s2007 gw | s |||| 0|eng d
020 |a 9783540729273  |9 978-3-540-72927-3 
024 7 |a 10.1007/978-3-540-72927-3  |2 doi 
050 4 |a Q334-342 
050 4 |a TA347.A78 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Learning Theory  |h [electronic resource] :  |b 20th Annual Conference on Learning Theory, COLT 2007, San Diego, CA, USA, June 13-15, 2007, Proceedings /  |c edited by Nader Bshouty, Claudio Gentile. 
250 |a 1st ed. 2007. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2007. 
300 |a XII, 636 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Artificial Intelligence,  |x 2945-9141 ;  |v 4539 
505 0 |a Invited Presentations -- Property Testing: A Learning Theory Perspective -- Spectral Algorithms for Learning and Clustering -- Unsupervised, Semisupervised and Active Learning I -- Minimax Bounds for Active Learning -- Stability of k-Means Clustering -- Margin Based Active Learning -- Unsupervised, Semisupervised and Active Learning II -- Learning Large-Alphabet and Analog Circuits with Value Injection Queries -- Teaching Dimension and the Complexity of Active Learning -- Multi-view Regression Via Canonical Correlation Analysis -- Statistical Learning Theory -- Aggregation by Exponential Weighting and Sharp Oracle Inequalities -- Occam's Hammer -- Resampling-Based Confidence Regions and Multiple Tests for a Correlated Random Vector -- Suboptimality of Penalized Empirical Risk Minimization in Classification -- Transductive Rademacher Complexity and Its Applications -- Inductive Inference -- U-Shaped, Iterative, and Iterative-with-Counter Learning -- Mind Change Optimal Learning of Bayes Net Structure -- Learning Correction Grammars -- Mitotic Classes -- Online and Reinforcement Learning I -- Regret to the Best vs. Regret to the Average -- Strategies for Prediction Under Imperfect Monitoring -- Bounded Parameter Markov Decision Processes with Average Reward Criterion -- Online and Reinforcement Learning II -- On-Line Estimation with the Multivariate Gaussian Distribution -- Generalised Entropy and Asymptotic Complexities of Languages -- Q-Learning with Linear Function Approximation -- Regularized Learning, Kernel Methods, SVM -- How Good Is a Kernel When Used as a Similarity Measure? -- Gaps in Support Vector Optimization -- Learning Languages with Rational Kernels -- Generalized SMO-Style Decomposition Algorithms -- Learning Algorithms and Limitations on Learning -- Learning Nested Halfspaces and Uphill Decision Trees -- An Efficient Re-scaled Perceptron Algorithm for Conic Systems -- A Lower Bound for Agnostically Learning Disjunctions -- Sketching Information Divergences -- Competing with Stationary Prediction Strategies -- Online and Reinforcement Learning III -- Improved Rates for the Stochastic Continuum-Armed Bandit Problem -- Learning Permutations with Exponential Weights -- Online and Reinforcement Learning IV -- Multitask Learning with Expert Advice -- Online Learning with Prior Knowledge -- Dimensionality Reduction -- Nonlinear Estimators and Tail Bounds for Dimension Reduction in l 1 Using Cauchy Random Projections -- Sparse Density Estimation with ?1 Penalties -- ?1 Regularization in Infinite Dimensional Feature Spaces -- Prediction by Categorical Features: Generalization Properties and Application to Feature Ranking -- Other Approaches -- Observational Learning in Random Networks -- The Loss Rank Principle for Model Selection -- Robust Reductions from Ranking to Classification -- Open Problems -- Rademacher Margin Complexity -- Open Problems in Efficient Semi-supervised PAC Learning -- Resource-Bounded Information Gathering for Correlation Clustering -- Are There Local Maxima in the Infinite-Sample Likelihood of Gaussian Mixture Estimation? -- When Is There a Free Matrix Lunch?. 
650 0 |a Artificial intelligence. 
650 0 |a Computer science. 
650 0 |a Algorithms. 
650 0 |a Machine theory. 
650 1 4 |a Artificial Intelligence. 
650 2 4 |a Theory of Computation. 
650 2 4 |a Algorithms. 
650 2 4 |a Formal Languages and Automata Theory. 
700 1 |a Bshouty, Nader.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Gentile, Claudio.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540839231 
776 0 8 |i Printed edition:  |z 9783540729259 
830 0 |a Lecture Notes in Artificial Intelligence,  |x 2945-9141 ;  |v 4539 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-72927-3  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
912 |a ZDB-2-LNC 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)