Cargando…

Existence and Regularity Properties of the Integrated Density of States of Random Schrödinger Operators

The theory of random Schrödinger operators is devoted to the mathematical analysis of quantum mechanical Hamiltonians modeling disordered solids. Apart from its importance in physics, it is a multifaceted subject in its own right, drawing on ideas and methods from various mathematical disciplines l...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Veselic, Ivan (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2008.
Edición:1st ed. 2008.
Colección:Lecture Notes in Mathematics, 1917
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-72691-3
003 DE-He213
005 20220118002029.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783540726913  |9 978-3-540-72691-3 
024 7 |a 10.1007/978-3-540-72691-3  |2 doi 
050 4 |a QA273.A1-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Veselic, Ivan.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Existence and Regularity Properties of the Integrated Density of States of Random Schrödinger Operators  |h [electronic resource] /  |c by Ivan Veselic. 
250 |a 1st ed. 2008. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2008. 
300 |a X, 147 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 1917 
505 0 |a Random Operators -- Existence of the Integrated Density of States -- Wegner Estimate -- Wegner's Original Idea. Rigorous Implementation -- Lipschitz Continuity of the IDS. 
520 |a The theory of random Schrödinger operators is devoted to the mathematical analysis of quantum mechanical Hamiltonians modeling disordered solids. Apart from its importance in physics, it is a multifaceted subject in its own right, drawing on ideas and methods from various mathematical disciplines like functional analysis, selfadjoint operators, PDE, stochastic processes and multiscale methods. The present text describes in detail a quantity encoding spectral features of random operators: the integrated density of states or spectral distribution function. Various approaches to the construction of the integrated density of states and the proof of its regularity properties are presented. The setting is general enough to apply to random operators on Riemannian manifolds with a discrete group action. References to and a discussion of other properties of the IDS are included, as are a variety of models beyond those treated in detail here. 
650 0 |a Probabilities. 
650 0 |a Differential equations. 
650 0 |a Dynamical systems. 
650 1 4 |a Probability Theory. 
650 2 4 |a Differential Equations. 
650 2 4 |a Dynamical Systems. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540838654 
776 0 8 |i Printed edition:  |z 9783540726890 
830 0 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 1917 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-72691-3  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)