|
|
|
|
LEADER |
00000nam a22000005i 4500 |
001 |
978-3-540-72373-8 |
003 |
DE-He213 |
005 |
20220118172517.0 |
007 |
cr nn 008mamaa |
008 |
100301s2007 gw | s |||| 0|eng d |
020 |
|
|
|a 9783540723738
|9 978-3-540-72373-8
|
024 |
7 |
|
|a 10.1007/978-3-540-72373-8
|2 doi
|
050 |
|
4 |
|a TA349-359
|
072 |
|
7 |
|a TGMD
|2 bicssc
|
072 |
|
7 |
|a SCI096000
|2 bisacsh
|
072 |
|
7 |
|a TGMD
|2 thema
|
082 |
0 |
4 |
|a 620.105
|2 23
|
100 |
1 |
|
|a Epstein, Marcelo.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
245 |
1 |
0 |
|a Material Inhomogeneities and their Evolution
|h [electronic resource] :
|b A Geometric Approach /
|c by Marcelo Epstein, Marek Elzanowski.
|
250 |
|
|
|a 1st ed. 2007.
|
264 |
|
1 |
|a Berlin, Heidelberg :
|b Springer Berlin Heidelberg :
|b Imprint: Springer,
|c 2007.
|
300 |
|
|
|a XIII, 261 p.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a Interaction of Mechanics and Mathematics,
|x 1860-6253
|
505 |
0 |
|
|a Inhomogeneity in Continuum Mechanics -- An overview of inhomogeneity theory -- Uniformity of second-grade materials -- Uniformity of Cosserat media -- Functionally graded bodies -- Material Evolution -- On energy, Cauchy stress and Eshelby stress -- An overview of the theory of material evolution -- Second-grade evolution -- Mathematical Foundations -- Basic geometric concepts -- Theory of connections -- Bundles of linear frames -- Connections of higher order.
|
520 |
|
|
|a Inhomogeneity theory is of importance for the description of a variety of material phenomena, including continuous distributions of dislocations, fracture mechanics, plasticity, biological remodelling and growth and, more generally, all processes that entail changes in the material body driven by forces known in literature as material or configurational. This monograph presents a unified treatment of the theory using some of the tools of modern differential geometry. The first part of the book deals with the geometrical description of uniform bodies and their homogeneity (i.e., integrability) conditions. In the second part, a theory of material evolution is developed and its relevance in various applied contexts discussed. The necessary geometrical notions are introduced as needed in the first two parts but often without due attention to an uncompromising mathematical rigour. This task is left for the third part of the book, which is a highly technical compendium of those concepts of modern differential geometry that are invoked in the first two parts (differentiable manifolds, Lie groups, jets, principal fibre bundles, G-structures, connections, frame bundles, integrable prolongations, groupoids, etc.). To make the text as useful as possible to active researchers and graduate students, considerable attention has been devoted to non-standard topics, such as second-grade materials, Cosserat media and functionally graded bodies.
|
650 |
|
0 |
|a Mechanics, Applied.
|
650 |
|
0 |
|a Solids.
|
650 |
|
0 |
|a Engineering mathematics.
|
650 |
|
0 |
|a Engineering-Data processing.
|
650 |
|
0 |
|a Mathematics.
|
650 |
|
0 |
|a Mechanics.
|
650 |
1 |
4 |
|a Solid Mechanics.
|
650 |
2 |
4 |
|a Mathematical and Computational Engineering Applications.
|
650 |
2 |
4 |
|a Applications of Mathematics.
|
650 |
2 |
4 |
|a Classical Mechanics.
|
700 |
1 |
|
|a Elzanowski, Marek.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer Nature eBook
|
776 |
0 |
8 |
|i Printed edition:
|z 9783540837992
|
776 |
0 |
8 |
|i Printed edition:
|z 9783540723721
|
830 |
|
0 |
|a Interaction of Mechanics and Mathematics,
|x 1860-6253
|
856 |
4 |
0 |
|u https://doi.uam.elogim.com/10.1007/978-3-540-72373-8
|z Texto Completo
|
912 |
|
|
|a ZDB-2-ENG
|
912 |
|
|
|a ZDB-2-SXE
|
950 |
|
|
|a Engineering (SpringerNature-11647)
|
950 |
|
|
|a Engineering (R0) (SpringerNature-43712)
|