Cargando…

Stratified Lie Groups and Potential Theory for Their Sub-Laplacians

The existence, for every sub-Laplacian, of a homogeneous fundamental solution smooth out of the origin, plays a crucial role in the book. This makes it possible to develop an exhaustive Potential Theory, almost completely parallel to that of the classical Laplace operator. This book provides an exte...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Bonfiglioli, Andrea (Autor), Lanconelli, Ermanno (Autor), Uguzzoni, Francesco (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2007.
Edición:1st ed. 2007.
Colección:Springer Monographs in Mathematics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-71897-0
003 DE-He213
005 20220115072106.0
007 cr nn 008mamaa
008 100301s2007 gw | s |||| 0|eng d
020 |a 9783540718970  |9 978-3-540-71897-0 
024 7 |a 10.1007/978-3-540-71897-0  |2 doi 
050 4 |a QA150-272 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002000  |2 bisacsh 
072 7 |a PBF  |2 thema 
082 0 4 |a 512  |2 23 
100 1 |a Bonfiglioli, Andrea.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Stratified Lie Groups and Potential Theory for Their Sub-Laplacians  |h [electronic resource] /  |c by Andrea Bonfiglioli, Ermanno Lanconelli, Francesco Uguzzoni. 
250 |a 1st ed. 2007. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2007. 
300 |a XXVI, 802 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Monographs in Mathematics,  |x 2196-9922 
505 0 |a Elements of Analysis of Stratified Groups -- Stratified Groups and Sub-Laplacians -- Abstract Lie Groups and Carnot Groups -- Carnot Groups of Step Two -- Examples of Carnot Groups -- The Fundamental Solution for a Sub-Laplacian and Applications -- Elements of Potential Theory for Sub-Laplacians -- Abstract Harmonic Spaces -- The ?-harmonic Space -- ?-subharmonic Functions -- Representation Theorems -- Maximum Principle on Unbounded Domains -- ?-capacity, ?-polar Sets and Applications -- ?-thinness and ?-fine Topology -- d-Hausdorff Measure and ?-capacity -- Further Topics on Carnot Groups -- Some Remarks on Free Lie Algebras -- More on the Campbell-Hausdorff Formula -- Families of Diffeomorphic Sub-Laplacians -- Lifting of Carnot Groups -- Groups of Heisenberg Type -- The Carathéodory-Chow-Rashevsky Theorem -- Taylor Formula on Homogeneous Carnot Groups. 
520 |a The existence, for every sub-Laplacian, of a homogeneous fundamental solution smooth out of the origin, plays a crucial role in the book. This makes it possible to develop an exhaustive Potential Theory, almost completely parallel to that of the classical Laplace operator. This book provides an extensive treatment of Potential Theory for sub-Laplacians on stratified Lie groups. In recent years, sub-Laplacian operators have received considerable attention due to their special role in the theory of linear second-order PDE's with semidefinite characteristic form. It also provides a largely self-contained presentation of stratified Lie groups, and of their Lie algebra of left-invariant vector fields. The presentation is accessible to graduate students and requires no specialized knowledge in algebra nor in differential geometry. It is thus addressed, besides PhD students, to junior and senior researchers in different areas such as: partial differential equations; geometric control theory; geometric measure theory and minimal surfaces in stratified Lie groups. 
650 0 |a Algebra. 
650 0 |a Differential equations. 
650 0 |a Potential theory (Mathematics). 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 1 4 |a Algebra. 
650 2 4 |a Differential Equations. 
650 2 4 |a Potential Theory. 
650 2 4 |a Topological Groups and Lie Groups. 
700 1 |a Lanconelli, Ermanno.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Uguzzoni, Francesco.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540837282 
776 0 8 |i Printed edition:  |z 9783642090998 
776 0 8 |i Printed edition:  |z 9783540718963 
830 0 |a Springer Monographs in Mathematics,  |x 2196-9922 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-71897-0  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)