Cargando…

Markov Models for Pattern Recognition From Theory to Applications /

Markov models are used to solve challenging pattern recognition problems on the basis of sequential data as, e.g., automatic speech or handwriting recognition. This comprehensive introduction to the Markov modeling framework describes both the underlying theoretical concepts of Markov models - cover...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Fink, Gernot A. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2008.
Edición:1st ed. 2008.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-71770-6
003 DE-He213
005 20220119174656.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783540717706  |9 978-3-540-71770-6 
024 7 |a 10.1007/978-3-540-71770-6  |2 doi 
050 4 |a Q337.5 
050 4 |a TK7882.P3 
072 7 |a UYQP  |2 bicssc 
072 7 |a COM016000  |2 bisacsh 
072 7 |a UYQP  |2 thema 
082 0 4 |a 006.4  |2 23 
100 1 |a Fink, Gernot A.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Markov Models for Pattern Recognition  |h [electronic resource] :  |b From Theory to Applications /  |c by Gernot A. Fink. 
250 |a 1st ed. 2008. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2008. 
300 |a XII, 248 p. 51 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Application Areas -- Application Areas -- Theory -- Foundations of Mathematical Statistics -- Vector Quantization -- Hidden Markov Models -- n-Gram Models -- Practice -- Computations with Probabilities -- Configuration of Hidden Markov Models -- Robust Parameter Estimation -- Efficient Model Evaluation -- Model Adaptation -- Integrated Search Methods -- Systems -- Speech Recognition -- Character and Handwriting Recognition -- Analysis of Biological Sequences. 
520 |a Markov models are used to solve challenging pattern recognition problems on the basis of sequential data as, e.g., automatic speech or handwriting recognition. This comprehensive introduction to the Markov modeling framework describes both the underlying theoretical concepts of Markov models - covering Hidden Markov models and Markov chain models - as used for sequential data and presents the techniques necessary to build successful systems for practical applications. This comprehensive introduction to the Markov modeling framework describes the underlying theoretical concepts - covering Hidden Markov models and Markov chain models - and presents the techniques and algorithmic solutions essential to creating real world applications. The actual use of Markov models in their three main application areas - namely speech recognition, handwriting recognition, and biological sequence analysis - is presented with examples of successful systems. Encompassing both Markov model theory and practise, this book addresses the needs of practitioners and researchers from the field of pattern recognition as well as graduate students with a related major field of study. 
650 0 |a Pattern recognition systems. 
650 0 |a Computer vision. 
650 0 |a Natural language processing (Computer science). 
650 0 |a Artificial intelligence. 
650 1 4 |a Automated Pattern Recognition. 
650 2 4 |a Computer Vision. 
650 2 4 |a Natural Language Processing (NLP). 
650 2 4 |a Artificial Intelligence. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642090882 
776 0 8 |i Printed edition:  |z 9783540837077 
776 0 8 |i Printed edition:  |z 9783540717669 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-71770-6  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)