Cargando…

Media Theory Interdisciplinary Applied Mathematics /

The focus of this book is a mathematical structure modeling a physical or biological system that can be in any of a number of `states.' Each state is characterized by a set of binary features, and differs from some other neighbor state or states by just one of those feature. A simple example of...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Eppstein, David (Autor), Falmagne, Jean-Claude (Autor), Ovchinnikov, Sergei (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2008.
Edición:1st ed. 2008.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-71697-6
003 DE-He213
005 20220117230440.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783540716976  |9 978-3-540-71697-6 
024 7 |a 10.1007/978-3-540-71697-6  |2 doi 
050 4 |a T57-57.97 
072 7 |a PBW  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
072 7 |a PBW  |2 thema 
082 0 4 |a 519  |2 23 
100 1 |a Eppstein, David.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Media Theory  |h [electronic resource] :  |b Interdisciplinary Applied Mathematics /  |c by David Eppstein, Jean-Claude Falmagne, Sergei Ovchinnikov. 
250 |a 1st ed. 2008. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2008. 
300 |a X, 328 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Examples and Preliminaries -- Basic Concepts -- Media and Well-graded Families -- Closed Media and ?-Closed Families -- Well-Graded Families of Relations -- Mediatic Graphs -- Media and Partial Cubes -- Media and Integer Lattices -- Hyperplane arrangements and their media -- Algorithms -- Visualization of Media -- Random Walks on Media -- Applications. 
520 |a The focus of this book is a mathematical structure modeling a physical or biological system that can be in any of a number of `states.' Each state is characterized by a set of binary features, and differs from some other neighbor state or states by just one of those feature. A simple example of a `state' is a partial solution of a jigsaw puzzle, which can be transformed into another partial solution or into the final solution just by adding or removing a single adjoining piece. The evolution of such a system over time is considered. Such a structure is analyzed from algebraic and probabilistic (stochastic) standpoints. 
650 0 |a Mathematics. 
650 0 |a Computer science. 
650 0 |a Artificial intelligence. 
650 0 |a Discrete mathematics. 
650 1 4 |a Applications of Mathematics. 
650 2 4 |a Theory of Computation. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Discrete Mathematics. 
700 1 |a Falmagne, Jean-Claude.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Ovchinnikov, Sergei.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540837015 
776 0 8 |i Printed edition:  |z 9783642090837 
776 0 8 |i Printed edition:  |z 9783540716969 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-71697-6  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)