Cargando…

Nonsmooth Analysis

The book treats various concepts of generalized derivatives and subdifferentials in normed spaces, their geometric counterparts (tangent and normal cones) and their application to optimization problems. It starts with the subdifferential of convex analysis, passes to corresponding concepts for local...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Schirotzek, Winfried (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2007.
Edición:1st ed. 2007.
Colección:Universitext,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-71333-3
003 DE-He213
005 20220113151246.0
007 cr nn 008mamaa
008 100301s2007 gw | s |||| 0|eng d
020 |a 9783540713333  |9 978-3-540-71333-3 
024 7 |a 10.1007/978-3-540-71333-3  |2 doi 
050 4 |a QA299.6-433 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBK  |2 thema 
082 0 4 |a 515  |2 23 
100 1 |a Schirotzek, Winfried.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Nonsmooth Analysis  |h [electronic resource] /  |c by Winfried Schirotzek. 
250 |a 1st ed. 2007. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2007. 
300 |a XII, 378 p. 31 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext,  |x 2191-6675 
505 0 |a Preliminaries -- The Conjugate of Convex Functionals -- Classical Derivatives -- The Subdifferential of Convex Functionals -- Optimality Conditions for Convex Problems -- Duality of Convex Problems -- Derivatives and Subdifferentials of Lipschitz Functionals -- Variational Principles -- Subdifferentials of Lower Semicontinuous Functionals -- Multifunctions -- Tangent and Normal Cones -- Optimality Conditions for Nonconvex Problems -- Extremal Principles and More Normals and Subdifferentials. 
520 |a The book treats various concepts of generalized derivatives and subdifferentials in normed spaces, their geometric counterparts (tangent and normal cones) and their application to optimization problems. It starts with the subdifferential of convex analysis, passes to corresponding concepts for locally Lipschitz continuous functions and finally presents subdifferentials for general lower semicontinuous functions. All basic tools are presented where they are needed; this concerns separation theorems, variational and extremal principles as well as relevant parts of multifunction theory. The presentation is rigorous, with detailed proofs. Each chapter ends with bibliographic notes and exercises. 
650 0 |a Mathematical analysis. 
650 1 4 |a Analysis. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540836315 
776 0 8 |i Printed edition:  |z 9783540713326 
830 0 |a Universitext,  |x 2191-6675 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-71333-3  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)