Cargando…

Attractivity and Bifurcation for Nonautonomous Dynamical Systems

Although, bifurcation theory of equations with autonomous and periodic time dependence is a major object of research in the study of dynamical systems since decades, the notion of a nonautonomous bifurcation is not yet established. In this book, two different approaches are developed which are based...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Rasmussen, Martin (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2007.
Edición:1st ed. 2007.
Colección:Lecture Notes in Mathematics, 1907
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-71225-1
003 DE-He213
005 20220118041359.0
007 cr nn 008mamaa
008 100301s2007 gw | s |||| 0|eng d
020 |a 9783540712251  |9 978-3-540-71225-1 
024 7 |a 10.1007/978-3-540-71225-1  |2 doi 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
072 7 |a PBKJ  |2 thema 
082 0 4 |a 515.35  |2 23 
100 1 |a Rasmussen, Martin.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Attractivity and Bifurcation for Nonautonomous Dynamical Systems  |h [electronic resource] /  |c by Martin Rasmussen. 
250 |a 1st ed. 2007. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2007. 
300 |a XI, 217 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 1907 
505 0 |a Notions of Attractivity and Bifurcation -- Nonautonomous Morse Decompositions -- LinearSystems -- Nonlinear Systems -- Bifurcations in Dimension One -- Bifurcations of Asymptotically Autonomous Systems. 
520 |a Although, bifurcation theory of equations with autonomous and periodic time dependence is a major object of research in the study of dynamical systems since decades, the notion of a nonautonomous bifurcation is not yet established. In this book, two different approaches are developed which are based on special definitions of local attractivity and repulsivity. It is shown that these notions lead to nonautonomous Morse decompositions, which are useful to describe the global asymptotic behavior of systems on compact phase spaces. Furthermore, methods from the qualitative theory for linear and nonlinear systems are derived, and nonautonomous counterparts of the classical one-dimensional autonomous bifurcation patterns are developed. 
650 0 |a Differential equations. 
650 0 |a Dynamical systems. 
650 1 4 |a Differential Equations. 
650 2 4 |a Dynamical Systems. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540836025 
776 0 8 |i Printed edition:  |z 9783540712244 
830 0 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 1907 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-71225-1  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)