Cargando…

New Trends in Optimal Filtering and Control for Polynomial and Time-Delay Systems

0. 1 Introduction Although the general optimal solution of the ?ltering problem for nonlinear state and observation equations confused with white Gaussian noises is given by the Kushner equation for the conditional density of an unobserved state with respect to obser- tions (see [48] or [41], Theore...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Basin, Michael (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2008.
Edición:1st ed. 2008.
Colección:Lecture Notes in Control and Information Sciences,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-70803-2
003 DE-He213
005 20220118210939.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783540708032  |9 978-3-540-70803-2 
024 7 |a 10.1007/978-3-540-70803-2  |2 doi 
050 4 |a TJ212-225 
072 7 |a TJFM  |2 bicssc 
072 7 |a GPFC  |2 bicssc 
072 7 |a TEC004000  |2 bisacsh 
072 7 |a TJFM  |2 thema 
082 0 4 |a 629.8312  |2 23 
082 0 4 |a 003  |2 23 
100 1 |a Basin, Michael.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a New Trends in Optimal Filtering and Control for Polynomial and Time-Delay Systems  |h [electronic resource] /  |c by Michael Basin. 
250 |a 1st ed. 2008. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2008. 
300 |a XXIV, 208 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Control and Information Sciences,  |x 1610-7411 
505 0 |a Optimal Filtering for Polynomial Systems -- Further Results: Optimal Identification and Control Problems -- Optimal Filtering Problems for Time-Delay Systems -- Optimal Control Problems for Time-Delay Systems -- Sliding Mode Applications to Optimal Filtering and Control. 
520 |a 0. 1 Introduction Although the general optimal solution of the ?ltering problem for nonlinear state and observation equations confused with white Gaussian noises is given by the Kushner equation for the conditional density of an unobserved state with respect to obser- tions (see [48] or [41], Theorem 6. 5, formula (6. 79) or [70], Subsection 5. 10. 5, formula (5. 10. 23)), there are a very few known examples of nonlinear systems where the Ku- ner equation can be reduced to a ?nite-dimensional closed system of ?ltering eq- tions for a certain number of lower conditional moments. The most famous result, the Kalman-Bucy ?lter [42], is related to the case of linear state and observation equations, where only two moments, the estimate itself and its variance, form a closed system of ?ltering equations. However, the optimal nonlinear ?nite-dimensional ?lter can be - tained in some other cases, if, for example, the state vector can take only a ?nite number of admissible states [91] or if the observation equation is linear and the drift term in the 2 2 state equation satis?es the Riccati equation df /dx + f = x (see [15]). The complete classi?cation of the "general situation" cases (this means that there are no special - sumptions on the structure of state and observation equations and the initial conditions), where the optimal nonlinear ?nite-dimensional ?lter exists, is given in [95]. 
650 0 |a Control engineering. 
650 0 |a Robotics. 
650 0 |a Automation. 
650 0 |a System theory. 
650 0 |a Control theory. 
650 1 4 |a Control and Systems Theory. 
650 2 4 |a Control, Robotics, Automation. 
650 2 4 |a Systems Theory, Control . 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540866985 
776 0 8 |i Printed edition:  |z 9783540708025 
830 0 |a Lecture Notes in Control and Information Sciences,  |x 1610-7411 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-70803-2  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
912 |a ZDB-2-LNI 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)