Cargando…

Weight Filtrations on Log Crystalline Cohomologies of Families of Open Smooth Varieties

In this volume, the authors construct a theory of weights on the log crystalline cohomologies of families of open smooth varieties in characteristic p>0, by defining and constructing four filtered complexes. Fundamental properties of these filtered complexes are proved, in particular the p-adic p...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Nakkajima, Yukiyoshi (Autor), Shiho, Atsushi (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2008.
Edición:1st ed. 2008.
Colección:Lecture Notes in Mathematics, 1959
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-70565-9
003 DE-He213
005 20220115192517.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783540705659  |9 978-3-540-70565-9 
024 7 |a 10.1007/978-3-540-70565-9  |2 doi 
050 4 |a QA564-609 
072 7 |a PBMW  |2 bicssc 
072 7 |a MAT012010  |2 bisacsh 
072 7 |a PBMW  |2 thema 
082 0 4 |a 516.35  |2 23 
100 1 |a Nakkajima, Yukiyoshi.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Weight Filtrations on Log Crystalline Cohomologies of Families of Open Smooth Varieties  |h [electronic resource] /  |c by Yukiyoshi Nakkajima, Atsushi Shiho. 
250 |a 1st ed. 2008. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2008. 
300 |a X, 272 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 1959 
505 0 |a Preliminaries on Filtered Derived Categories and Topoi -- Weight Filtrations on Log Crystalline Cohomologies -- Weight Filtrations and Slope Filtrations on Rigid Cohomologies (Summary). 
520 |a In this volume, the authors construct a theory of weights on the log crystalline cohomologies of families of open smooth varieties in characteristic p>0, by defining and constructing four filtered complexes. Fundamental properties of these filtered complexes are proved, in particular the p-adic purity, the functionality of three filtered complexes, the weight-filtered base change formula, the weight-filtered Künneth formula, the weight-filtered Poincaré duality, and the E2-degeneration of p-adic weight spectral sequences. In addition, the authors state some theorems on the weight filtration and the slope filtration on the rigid cohomology of a separated scheme of finite type over a perfect field of characteristic p>0. 
650 0 |a Algebraic geometry. 
650 0 |a Commutative algebra. 
650 0 |a Commutative rings. 
650 1 4 |a Algebraic Geometry. 
650 2 4 |a Commutative Rings and Algebras. 
700 1 |a Shiho, Atsushi.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540866565 
776 0 8 |i Printed edition:  |z 9783540705642 
830 0 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 1959 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-70565-9  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)