Cargando…

Matrix Convolution Operators on Groups

In the last decade, convolution operators of matrix functions have received unusual attention due to their diverse applications. This monograph presents some new developments in the spectral theory of these operators. The setting is the Lp spaces of matrix-valued functions on locally compact groups....

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Chu, Cho-Ho (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2008.
Edición:1st ed. 2008.
Colección:Lecture Notes in Mathematics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-69798-5
003 DE-He213
005 20220115213654.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783540697985  |9 978-3-540-69798-5 
024 7 |a 10.1007/978-3-540-69798-5  |2 doi 
050 4 |a QA331.7 
072 7 |a PBKD  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBKD  |2 thema 
082 0 4 |a 515.9  |2 23 
100 1 |a Chu, Cho-Ho.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Matrix Convolution Operators on Groups  |h [electronic resource] /  |c by Cho-Ho Chu. 
250 |a 1st ed. 2008. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2008. 
300 |a IX, 114 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 1617-9692 
505 0 |a Lebesgue Spaces of Matrix Functions -- Matrix Convolution Operators -- Convolution Semigroups. 
520 |a In the last decade, convolution operators of matrix functions have received unusual attention due to their diverse applications. This monograph presents some new developments in the spectral theory of these operators. The setting is the Lp spaces of matrix-valued functions on locally compact groups. The focus is on the spectra and eigenspaces of convolution operators on these spaces, defined by matrix-valued measures. Among various spectral results, the L2-spectrum of such an operator is completely determined and as an application, the spectrum of a discrete Laplacian on a homogeneous graph is computed using this result. The contractivity properties of matrix convolution semigroups are studied and applications to harmonic functions on Lie groups and Riemannian symmetric spaces are discussed. An interesting feature is the presence of Jordan algebraic structures in matrix-harmonic functions. 
650 0 |a Functions of complex variables. 
650 0 |a Geometry, Differential. 
650 0 |a Functional analysis. 
650 0 |a Operator theory. 
650 0 |a Harmonic analysis. 
650 0 |a Nonassociative rings. 
650 1 4 |a Functions of a Complex Variable. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Operator Theory. 
650 2 4 |a Abstract Harmonic Analysis. 
650 2 4 |a Non-associative Rings and Algebras. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540865926 
776 0 8 |i Printed edition:  |z 9783540697978 
830 0 |a Lecture Notes in Mathematics,  |x 1617-9692 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-69798-5  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)