Cargando…

Theory of Sobolev Multipliers With Applications to Differential and Integral Operators /

The purpose of this book is to give a comprehensive exposition of the theory of pointwise multipliers acting in pairs of spaces of differentiable functions. The theory was essentially developed by the authors during the last thirty years and the present volume is mainly based on their results. Part...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Maz'ya, Vladimir (Autor), Shaposhnikova, Tatyana O. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2009.
Edición:1st ed. 2009.
Colección:Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics, 337
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-69492-2
003 DE-He213
005 20220118213337.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 |a 9783540694922  |9 978-3-540-69492-2 
024 7 |a 10.1007/978-3-540-69492-2  |2 doi 
050 4 |a QA299.6-433 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBK  |2 thema 
082 0 4 |a 515  |2 23 
100 1 |a Maz'ya, Vladimir.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Theory of Sobolev Multipliers  |h [electronic resource] :  |b With Applications to Differential and Integral Operators /  |c by Vladimir Maz'ya, Tatyana O. Shaposhnikova. 
250 |a 1st ed. 2009. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2009. 
300 |a XIV, 614 p. 2 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics,  |x 2196-9701 ;  |v 337 
505 0 |a Description and Properties of Multipliers -- Trace Inequalities for Functions in Sobolev Spaces -- Multipliers in Pairs of Sobolev Spaces -- Multipliers in Pairs of Potential Spaces -- The Space M(B m p ? B l p ) with p > 1 -- The Space M(B m 1 ? B l 1) -- Maximal Algebras in Spaces of Multipliers -- Essential Norm and Compactness of Multipliers -- Traces and Extensions of Multipliers -- Sobolev Multipliers in a Domain, Multiplier Mappings and Manifolds -- Applications of Multipliers to Differential and Integral Operators -- Differential Operators in Pairs of Sobolev Spaces -- Schrödinger Operator and M(w 1 2 ? w ?1 2) -- Relativistic Schrödinger Operator and M(W ½ 2 ? W ?½ 2) -- Multipliers as Solutions to Elliptic Equations -- Regularity of the Boundary in L p -Theory of Elliptic Boundary Value Problems -- Multipliers in the Classical Layer Potential Theory for Lipschitz Domains -- Applications of Multipliers to the Theory of Integral Operators. 
520 |a The purpose of this book is to give a comprehensive exposition of the theory of pointwise multipliers acting in pairs of spaces of differentiable functions. The theory was essentially developed by the authors during the last thirty years and the present volume is mainly based on their results. Part I is devoted to the theory of multipliers and encloses the following topics: trace inequalities, analytic characterization of multipliers, relations between spaces of Sobolev multipliers and other function spaces, maximal subalgebras of multiplier spaces, traces and extensions of multipliers, essential norm and compactness of multipliers, and miscellaneous properties of multipliers. Part II concerns several applications of this theory: continuity and compactness of differential operators in pairs of Sobolev spaces, multipliers as solutions to linear and quasilinear elliptic equations, higher regularity in the single and double layer potential theory for Lipschitz domains, regularity of the boundary in $L_p$-theory of elliptic boundary value problems, and singular integral operators in Sobolev spaces. 
650 0 |a Mathematical analysis. 
650 0 |a Integral equations. 
650 0 |a Differential equations. 
650 0 |a Functional analysis. 
650 1 4 |a Analysis. 
650 2 4 |a Integral Equations. 
650 2 4 |a Differential Equations. 
650 2 4 |a Functional Analysis. 
700 1 |a Shaposhnikova, Tatyana O.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540865711 
776 0 8 |i Printed edition:  |z 9783642089022 
776 0 8 |i Printed edition:  |z 9783540694908 
830 0 |a Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics,  |x 2196-9701 ;  |v 337 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-69492-2  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)