|
|
|
|
LEADER |
00000nam a22000005i 4500 |
001 |
978-3-540-69393-2 |
003 |
DE-He213 |
005 |
20220114110312.0 |
007 |
cr nn 008mamaa |
008 |
100301s2008 gw | s |||| 0|eng d |
020 |
|
|
|a 9783540693932
|9 978-3-540-69393-2
|
024 |
7 |
|
|a 10.1007/978-3-540-69393-2
|2 doi
|
050 |
|
4 |
|a QA641-670
|
072 |
|
7 |
|a PBMP
|2 bicssc
|
072 |
|
7 |
|a MAT012030
|2 bisacsh
|
072 |
|
7 |
|a PBMP
|2 thema
|
082 |
0 |
4 |
|a 516.36
|2 23
|
100 |
1 |
|
|a Arwini, Khadiga.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
245 |
1 |
0 |
|a Information Geometry
|h [electronic resource] :
|b Near Randomness and Near Independence /
|c by Khadiga Arwini, C. T. J. Dodson.
|
250 |
|
|
|a 1st ed. 2008.
|
264 |
|
1 |
|a Berlin, Heidelberg :
|b Springer Berlin Heidelberg :
|b Imprint: Springer,
|c 2008.
|
300 |
|
|
|a X, 260 p. 103 illus.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a Lecture Notes in Mathematics,
|x 1617-9692
|
505 |
0 |
|
|a Mathematical Statistics and Information Theory -- to Riemannian Geometry -- Information Geometry -- Information Geometry of Bivariate Families -- Neighbourhoods of Poisson Randomness, Independence, and Uniformity -- Cosmological Voids and Galactic Clustering -- Amino Acid Clustering -- Cryptographic Attacks and Signal Clustering -- Stochastic Fibre Networks -- Stochastic Porous Media and Hydrology -- Quantum Chaology.
|
520 |
|
|
|a This volume will be useful to practising scientists and students working in the application of statistical models to real materials or to processes with perturbations of a Poisson process, a uniform process, or a state of independence for a bivariate process. We use information geometry to provide a common differential geometric framework for a wide range of illustrative applications including amino acid sequence spacings in protein chains, cryptology studies, clustering of communications and galaxies, cosmological voids, coupled spatial statistics in stochastic fibre networks and stochastic porous media, quantum chaology. Introduction sections are provided to mathematical statistics, differential geometry and the information geometry of spaces of probability density functions.
|
650 |
|
0 |
|a Geometry, Differential.
|
650 |
|
0 |
|a Mathematics.
|
650 |
|
0 |
|a Probabilities.
|
650 |
|
0 |
|a Statistics .
|
650 |
|
0 |
|a Mechanics, Applied.
|
650 |
|
0 |
|a Solids.
|
650 |
|
0 |
|a Population genetics.
|
650 |
1 |
4 |
|a Differential Geometry.
|
650 |
2 |
4 |
|a Applications of Mathematics.
|
650 |
2 |
4 |
|a Probability Theory.
|
650 |
2 |
4 |
|a Statistics in Engineering, Physics, Computer Science, Chemistry and Earth Sciences.
|
650 |
2 |
4 |
|a Solid Mechanics.
|
650 |
2 |
4 |
|a Population Genetics.
|
700 |
1 |
|
|a Dodson, C. T. J.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer Nature eBook
|
776 |
0 |
8 |
|i Printed edition:
|z 9783540865490
|
776 |
0 |
8 |
|i Printed edition:
|z 9783540693918
|
830 |
|
0 |
|a Lecture Notes in Mathematics,
|x 1617-9692
|
856 |
4 |
0 |
|u https://doi.uam.elogim.com/10.1007/978-3-540-69393-2
|z Texto Completo
|
912 |
|
|
|a ZDB-2-SMA
|
912 |
|
|
|a ZDB-2-SXMS
|
912 |
|
|
|a ZDB-2-LNM
|
950 |
|
|
|a Mathematics and Statistics (SpringerNature-11649)
|
950 |
|
|
|a Mathematics and Statistics (R0) (SpringerNature-43713)
|