Cargando…

Information Geometry Near Randomness and Near Independence /

This volume will be useful to practising scientists and students working in the application of statistical models to real materials or to processes with perturbations of a Poisson process, a uniform process, or a state of independence for a bivariate process. We use information geometry to provide a...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Arwini, Khadiga (Autor), Dodson, C. T. J. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2008.
Edición:1st ed. 2008.
Colección:Lecture Notes in Mathematics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-69393-2
003 DE-He213
005 20220114110312.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783540693932  |9 978-3-540-69393-2 
024 7 |a 10.1007/978-3-540-69393-2  |2 doi 
050 4 |a QA641-670 
072 7 |a PBMP  |2 bicssc 
072 7 |a MAT012030  |2 bisacsh 
072 7 |a PBMP  |2 thema 
082 0 4 |a 516.36  |2 23 
100 1 |a Arwini, Khadiga.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Information Geometry  |h [electronic resource] :  |b Near Randomness and Near Independence /  |c by Khadiga Arwini, C. T. J. Dodson. 
250 |a 1st ed. 2008. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2008. 
300 |a X, 260 p. 103 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 1617-9692 
505 0 |a Mathematical Statistics and Information Theory -- to Riemannian Geometry -- Information Geometry -- Information Geometry of Bivariate Families -- Neighbourhoods of Poisson Randomness, Independence, and Uniformity -- Cosmological Voids and Galactic Clustering -- Amino Acid Clustering -- Cryptographic Attacks and Signal Clustering -- Stochastic Fibre Networks -- Stochastic Porous Media and Hydrology -- Quantum Chaology. 
520 |a This volume will be useful to practising scientists and students working in the application of statistical models to real materials or to processes with perturbations of a Poisson process, a uniform process, or a state of independence for a bivariate process. We use information geometry to provide a common differential geometric framework for a wide range of illustrative applications including amino acid sequence spacings in protein chains, cryptology studies, clustering of communications and galaxies, cosmological voids, coupled spatial statistics in stochastic fibre networks and stochastic porous media, quantum chaology. Introduction sections are provided to mathematical statistics, differential geometry and the information geometry of spaces of probability density functions. 
650 0 |a Geometry, Differential. 
650 0 |a Mathematics. 
650 0 |a Probabilities. 
650 0 |a Statistics . 
650 0 |a Mechanics, Applied. 
650 0 |a Solids. 
650 0 |a Population genetics. 
650 1 4 |a Differential Geometry. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Probability Theory. 
650 2 4 |a Statistics in Engineering, Physics, Computer Science, Chemistry and Earth Sciences. 
650 2 4 |a Solid Mechanics. 
650 2 4 |a Population Genetics. 
700 1 |a Dodson, C. T. J.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540865490 
776 0 8 |i Printed edition:  |z 9783540693918 
830 0 |a Lecture Notes in Mathematics,  |x 1617-9692 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-69393-2  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)