Cargando…

Proof Theory The First Step into Impredicativity /

This book verifies with compelling evidence the author's intent to "write a book on proof theory that needs no previous knowledge of proof theory". Avoiding the cryptic terminology of proof theory as far as possible, the book starts at an elementary level and displays the connections...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Pohlers, Wolfram (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2009.
Edición:1st ed. 2009.
Colección:Universitext,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-69319-2
003 DE-He213
005 20220120045948.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 |a 9783540693192  |9 978-3-540-69319-2 
024 7 |a 10.1007/978-3-540-69319-2  |2 doi 
050 4 |a QA8.9-10.3 
072 7 |a PBCD  |2 bicssc 
072 7 |a PBC  |2 bicssc 
072 7 |a MAT018000  |2 bisacsh 
072 7 |a PBCD  |2 thema 
072 7 |a PBC  |2 thema 
082 0 4 |a 511.3  |2 23 
100 1 |a Pohlers, Wolfram.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Proof Theory  |h [electronic resource] :  |b The First Step into Impredicativity /  |c by Wolfram Pohlers. 
250 |a 1st ed. 2009. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2009. 
300 |a XIV, 374 p. 5 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext,  |x 2191-6675 
505 0 |a Historical Background -- Primitive Recursive Functions and Relations -- Ordinals -- Pure Logic -- Truth Complexity for ?11-Sentences -- Inductive Definitions -- The Ordinal Analysis for PA -- Autonomous Ordinals and the Limits of Predicativity -- Ordinal Analysis of the Theory for Inductive Definitions -- Provably Recursive Functions of NT -- Ordinal Analysis for Kripke-Platek Set Theory with Infinity -- Predicativity Revisited -- Nonmonotone Inductive Definitions -- Epilogue. 
520 |a This book verifies with compelling evidence the author's intent to "write a book on proof theory that needs no previous knowledge of proof theory". Avoiding the cryptic terminology of proof theory as far as possible, the book starts at an elementary level and displays the connections between infinitary proof theory and generalized recursion theory, especially the theory of inductive definitions. As a "warm up" Gentzen's classical analysis of pure number theory is presented in a more modern terminology, followed by an explanation and proof of the famous result of Feferman and Schütte on the limits of predicativity. The author also provides an introduction to ordinal arithmetic, introduces the Veblen hierarchy and employs these functions to design an ordinal notation system for the ordinals below Epsilon 0 and Gamma 0, while emphasizing the first step into impredicativity, that is, the first step beyond Gamma 0. This is first done by an analysis of the theory of non-iterated inductive definitions using Buchholz's improvement of local predicativity, followed by Weiermann's observation that Buchholz's method can also be used for predicative theories to characterize their provably recursive functions. A second example presents an ordinal analysis of the theory of $/Pi_2$ reflection, a subsystem of set theory that is proof-theoretically equivalent to Kripke-Platek set. The book is pitched at undergraduate/graduate level, and thus addressed to students of mathematical logic interested in the basics of proof theory. It can be used for introductory as well as more advanced courses in proof theory. An earlier version of this book was published in 1989 as volume 1407 of the "Lecture Notes in Mathematics" (ISBN 978-3-540-51842-6). 
650 0 |a Mathematical logic. 
650 0 |a Operations research. 
650 0 |a Management science. 
650 1 4 |a Mathematical Logic and Foundations. 
650 2 4 |a Operations Research, Management Science . 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540865322 
776 0 8 |i Printed edition:  |z 9783540693185 
830 0 |a Universitext,  |x 2191-6675 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-69319-2  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)