Cargando…

Optimal Transportation Networks Models and Theory /

The transportation problem can be formalized as the problem of finding the optimal way to transport a given measure into another with the same mass. In contrast to the Monge-Kantorovitch problem, recent approaches model the branched structure of such supply networks as minima of an energy functional...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Bernot, Marc (Autor), Caselles, Vicent (Autor), Morel, Jean-Michel (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2009.
Edición:1st ed. 2009.
Colección:Lecture Notes in Mathematics, 1955
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-69315-4
003 DE-He213
005 20220119121104.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 |a 9783540693154  |9 978-3-540-69315-4 
024 7 |a 10.1007/978-3-540-69315-4  |2 doi 
050 4 |a QA402.5-402.6 
050 4 |a QA315-316 
072 7 |a PBU  |2 bicssc 
072 7 |a MAT005000  |2 bisacsh 
072 7 |a PBU  |2 thema 
082 0 4 |a 519.6  |2 23 
082 0 4 |a 515.64  |2 23 
100 1 |a Bernot, Marc.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Optimal Transportation Networks  |h [electronic resource] :  |b Models and Theory /  |c by Marc Bernot, Vicent Caselles, Jean-Michel Morel. 
250 |a 1st ed. 2009. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2009. 
300 |a X, 200 p. 58 illus., 5 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 1955 
505 0 |a Introduction: The Models -- The Mathematical Models -- Traffic Plans -- The Structure of Optimal Traffic Plans -- Operations on Traffic Plans -- Traffic Plans and Distances between Measures -- The Tree Structure of Optimal Traffic Plans and their Approximation -- Interior and Boundary Regularity -- The Equivalence of Various Models -- Irrigability and Dimension -- The Landscape of an Optimal Pattern -- The Gilbert-Steiner Problem -- Dirac to Lebesgue Segment: A Case Study -- Application: Embedded Irrigation Networks -- Open Problems. 
520 |a The transportation problem can be formalized as the problem of finding the optimal way to transport a given measure into another with the same mass. In contrast to the Monge-Kantorovitch problem, recent approaches model the branched structure of such supply networks as minima of an energy functional whose essential feature is to favour wide roads. Such a branched structure is observable in ground transportation networks, in draining and irrigation systems, in electrical power supply systems and in natural counterparts such as blood vessels or the branches of trees. These lectures provide mathematical proof of several existence, structure and regularity properties empirically observed in transportation networks. The link with previous discrete physical models of irrigation and erosion models in geomorphology and with discrete telecommunication and transportation models is discussed. It will be mathematically proven that the majority fit in the simple model sketched in this volume. 
650 0 |a Mathematical optimization. 
650 0 |a Calculus of variations. 
650 0 |a Operations research. 
650 0 |a Management science. 
650 0 |a Industrial Management. 
650 0 |a Mathematics. 
650 1 4 |a Calculus of Variations and Optimization. 
650 2 4 |a Operations Research, Management Science . 
650 2 4 |a Industrial Management. 
650 2 4 |a Operations Research and Decision Theory. 
650 2 4 |a Applications of Mathematics. 
700 1 |a Caselles, Vicent.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Morel, Jean-Michel.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540865308 
776 0 8 |i Printed edition:  |z 9783540693147 
830 0 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 1955 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-69315-4  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)