Self-Adaptive Heuristics for Evolutionary Computation
Evolutionary algorithms are successful biologically inspired meta-heuristics. Their success depends on adequate parameter settings. The question arises: how can evolutionary algorithms learn parameters automatically during the optimization? Evolution strategies gave an answer decades ago: self-adapt...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Autor Corporativo: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2008.
|
Edición: | 1st ed. 2008. |
Colección: | Studies in Computational Intelligence,
147 |
Temas: | |
Acceso en línea: | Texto Completo |
Tabla de Contenidos:
- I: Foundations of Evolutionary Computation
- Evolutionary Algorithms
- Self-Adaptation
- II: Self-Adaptive Operators
- Biased Mutation for Evolution Strategies
- Self-Adaptive Inversion Mutation
- Self-Adaptive Crossover
- III: Constraint Handling
- Constraint Handling Heuristics for Evolution Strategies
- IV: Summary
- Summary and Conclusion
- V: Appendix
- Continuous Benchmark Functions
- Discrete Benchmark Functions.